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Abstract

Browser users have increasingly fallen victim to a variety of attacks carried out by malicious browser

extensions. These extensions often have powerful privileges and can execute within the context of sens-

itive web-pages. Popular attacks include hijacking users’ social media accounts, injecting or replacing

advertisements and tracking users. Previous work to detect malice in extensions has not succeeded in

providing adequate security guarantees about extensions running within browsers.

We present a novel extension security model that categorises certain actions as suspicious and prompts

users to allow or prevent suspicious operations when executed by extensions. We propose minimal changes

to the Chrome browser that implement this model and that provide guarantees that malicious extension

actions cannot evade detection. In order to not inconvenience users, we build features that reduce the

quantity of decisions that they are required to make.

We extensively evaluate our modified browser with regards to security guarantees, user interface, user

understanding and performance overhead. Results demonstrate our browser’s ability to intercept and

stop malicious extension operations as they occur. However, our evaluation also suggests that users

struggle with this responsibility and we find evidence of significant browser performance overheads.
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Introduction

Web browsers are one of the most popular applications. Anecdotally, this is because it is easy for users of

limited technological expertise to use browsers and because developing and deploying web applications is

far easier than desktop or mobile applications. All major browsers currently support an extension system

whereby third parties can add functionality or modify behaviour of the browser or web-pages. Chrome,

Firefox, Opera1, and Safari support JavaScript-based browser extensions, while Internet Explorer (IE)

supports binary add-ons.

Extensions provide additional browser functionality which can include blocking advertisements, managing

passwords, translating pages and providing dictionaries. In addition, extensions are often granted the

privilege to run within sensitive browser tabs that render banking, social media and medical web-pages, as

well as email and communication applications. Extension scripts abide by different security models than

standard web-page scripts and are frequently granted powerful privileges that let them access elements

on a page, use the network to send or request arbitrary information and access the browser’s history and

tabs.

Chrome is often regarded as the most secure browser and is also, perhaps consequently, the most pop-

ular web browser [1]. However, the Chrome extension architecture and security model was designed to

defend users from benign-but-buggy extensions that are not designed by security-conscious developers [2].

Unfortunately, Chrome’s permission and security models do not adequately protect users from malicious

extensions that potentially harm and act against the requirements of users. As a result, serious vulner-

abilities exist that allow malicious extensions to hijack social media accounts, inject advertisements and

track users, or that allow extensions to bypass the permission system by providing useful functionality.

Previous work has suggested improvements to Firefox and Chrome’s security model and permission system

[2, 3, 4]. However, large scale changes that revoke or modify permission models can have the adverse

effect of breaking many existing benign extensions. Other research has automatically and dynamically

analysed Chrome extensions and IE add-ons to determine malice [5, 6, 7]. Yet detection by these tools

can be easily evaded by sophisticated attackers who can fingerprint analysis environments and therefore

do not provide strong guarantees about browser security.

1.1 Objectives

Malicious extensions can harm users. Sophisticated attackers have previously been able to evade detection

and successfully carry out attacks on victims. The aim of this project is to solve this problem and

guarantee the protection of Chrome users from attacks realized by malicious extensions.

1Both Firefox and Opera extensions are called add-ons.
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Web-pages can be malicious themselves and much work has been done to extinguish them, but for the

purpose of this project, we assume that they are not. When considering approaches and developing

different solutions, our goals, in order of priority, are to:

1. Protect users from Facebook hijacking, ad injection, user tracking and other malicious extension

related threats.

2. Build a tool or extend the Chrome browser to protect users in a way that cannot be evaded by

sophisticated attackers.

3. Break minimal benign Chrome extensions.

4. Break minimal web-pages and not incur a significant browsing performance overhead.

1.2 Contributions

In this project, we:

1. Introduce a novel extension permission model whereby users are prompted to allow or prevent

certain suspicious extension actions at run-time. We evaluate and classify a set of Web API [8]

operations as suspicious if executed by extensions. We build a tool that allows security-conscious

users to configure this set themselves (§3).

2. Suggest and implement a mechanism to detect if execution within Chrome’s browser rendering

engine was triggered by an extension script or web-page script. If the former, our proposed changes

correctly determine the specific extension that is executing within the engine. We incorporate an

existing Chromium patch to guarantee extensions cannot evade detection (§4).

3. Use this mechanism to intercept suspicious browser extension actions as they occur and ask browser

users if they want to allow or prevent the actions via a pop-up dialog (§5).

4. Reduce the number of pop-up dialogs displayed to users by suppressing benign events, filtering out

operations on elements not attached to the web-page, remembering the users decision to allow or

prevent certain operations and marking specific elements as sensitive (§6).

5. Evaluate our modified Chrome browser against existing extensions on the Chrome Web Store and

against a contrived malicious extension with regards to security guarantees. We assess our browser’s

user interface and the impact of our changes by surveying users and measuring suspicious actions in

popular benign extensions. We finally compare the performance overhead of our modified Chrome

browser and determine the feasibility of merging the changes into the Chromium project (§7).
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Background

This chapter first gives a high-level overview of the Chrome browser, including its multi-process archi-

tecture, rendering engine and compositor thread architecture.

A detailed overview of Chrome extensions is provided which describes the extension architecture and

security model, and the Content Security Policy (CSP) that the extension system implements. Chrome’s

extension permission and capability system, including some limitations, is presented. We discuss current

prevalent threats in the Chrome extension ecosystem.

Previous work is investigated that analyses extensions dynamically to determine malice and we study

related work that involves tracking sensitive data through PHP applications, Internet Explorer (IE)

binary add-ons and across cloud service providers.

2.1 Chrome Browser

We decided to focus on the Chrome browser due to its popularity [1], open-source license1 [9] and

because it is in compliance with various web standards [10]. Furthermore, Chrome also has the most

comprehensive extension security system - only allowing installation via the Chrome Web Store (CWS),

requiring privileges to be granted by users, enforcing privilege separation and more [2, 5]. Many of

the issues and suggested solutions mentioned in this report may also naturally extend to other popular

browsers.

As this project concerns itself with protecting Chrome browser users from malicious extensions, we start

by researching and providing a high-level overview of the Chrome browser. The information conveyed in

this section is necessary to understand the challenges we faced and solutions we proposed through this

project.

2.1.1 Multi-Process Architecture

In order to protect against render-engine bugs, crashes and security vulnerabilities, Chrome implements

a multi-process architecture [11].

Chrome runs a separate renderer process for each web-page, including tabs and extension background

pages (§2.2.1). By rendering and executing each page and its scripts within an individual process, a crash

in a renderer process is unlikely to affect the browser or other renderer processes. The memory of each

process is also separated and protected by the operating systems on which Chrome executes, preventing

compromised renderer processes from reading sensitive data across web-pages. Chrome also sand-boxes

1The majority of the Chrome browser’s source code is released as the open-source Chromium browser. Although we
modify the Chromium browser, for the sake of simplicity, we refer to it as the Chrome browser throughout this report.
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each renderer process, restricting access to the network, file-system and devices. These restrictions limit

an attacker’s potential, even if they control a renderer process. Chrome’s Site Isolation project aims to

continue to strengthen security by further isolating web components [12].

In addition to the security benefits, Chrome provides each renderer process with a priority; hidden

windows and tabs are assigned lower priorities. When memory is sparse, Chrome first swaps memory out

from low-priority processes to disk in order to keep focused tabs responsive.

Chrome also runs a main browser process responsible for managing and communicating with each renderer

process and displaying the browser user interface. This includes the navigation bar and pop-dialogs display

during run-time.

Figure 2.1: Each web-page is rendered within its own sand-boxed renderer process which communicates
with its parent browser process.

Inter-Process Communication

Renderer processes and the browser process communicate via a named pipe created using the socketpair

system call on Linux and OS X operating systems [13]. In order to not block the user interface, messages

sent and received in the browser process are processed within a dedicated I/O thread and subsequently

proxied to the main thread using a ChannelProxy. Each renderer process also has a main thread which

manages communication between the browser process and itself, and another thread for rendering (§2.1.3).

To communicate between processes, developers define a message template, including serialisable input

and output types, and whether the sender should wait for a response or not. Each message template

registers a method in the destination process to handle incoming messages and send back appropriate

responses.

2.1.2 Blink Rendering Engine

Each renderer process interprets and lays out web-pages using Chrome’s open-source layout engine, Blink.

The Blink engine was forked from WebKit’s WebCore component, used in the Safari browser, in order to

accommodate large scale architectural changes [14].

As well as rendering pages, Blink provides a standardised web interface to scripts via JavaScript objects

and functions. This interface, mostly specified using a Web Interface Definition Language (IDL) [15],

provides a wide variety of functionality - everything from sending network requests to showing user

prompts.
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The interface is largely specified by the World Wide Web Consortium (W3C) and Web Hypertext Applic-

ation Technology Working Group (WHATAG). In order to conform to these specifications, the Chromium

team has been known to import and execute a suit of regression tests [16].

2.1.3 Compositor Thread Architecture

The main thread of the renderer process routinely blocks while network requests are sent, styles are

recalculated and the garbage collector is triggered. To prevent jarred scrolling or animations, the renderer

process follows a compositor thread architecture [17].

The process contains two important threads: the main thread stores a model of what Blink wants to draw

and the compositor thread2 which paints version-ed web-page snapshots to the screen. The render tree

of each web-page is represented as scroll-able layers which each have a size, content and transformation.

A layer tree indirectly3 represents each web-page and every layer on the main thread (LayerChromium)

maps directly to a layer on the compositor thread (CCLayerImpl). To facilitate smooth scrolling and

animations, input events and animations are performed on layers in the compositor thread without

needing to consult the potentially blocked main thread.

Whenever changes are made to the page within the main thread, it is marked as “dirty” and the compos-

itor thread is alerted of inconsistencies between the two layer trees. Every so often, a scheduler executing

on the compositor thread requests the main thread blocks while it commits changes to the compositor.

2.2 Chrome Extensions

Extensions allow third parties to add additional functionality to web-pages and the Chrome browser

without modifying Chrome’s native source code. They are essentially bundles of files that include:

JavaScript, HTML, CSS, videos, images and other assets. Extensions can be viewed as basic web-pages

that have the ability to use all of the Web APIs [8] the Chrome browser provides to regular web-pages.

Most extensions inject JavaScript, in the form of content scripts, into web-pages when they load. Using

content scripts or cross-origin network requests, extensions can interact with web-pages and remote servers

respectively. They can also interact with other components of the browser such as tabs, bookmarks and

browsing history.

All extensions must have a manifest.json file that specifies meta-data about an extension (such as

version and author), the extension’s structure (such as its content scripts, browser or page actions) and

perhaps most importantly, its permissions and capabilities [19].

The Chrome extension ecosystem includes an autoupdating mechanism in order to quickly dispatch bug

and security fixes, functionality and user interface (UI) improvements. Updates to extensions are auto-

matically applied without user involvement. This is performed automatically if third parties publish their

extensions through the Chrome Developer Dashboard or can be performed manually by specifying an

update url field in the manifest.json file. Every few hours, the browser checks whether any extension

installed has pending updates by querying the CWS or the server specified by the update url [20].

2The compositor thread is commonly referred to as the impl thread because it implements the compositor.
3The layer tree is a sparse representation of a render tree which in turn represents a page’s DOM tree [18].
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2.2.1 Architecture and Security Model

The Firefox browser has publicly suffered from vulnerabilities at the hands of popular but buggy exten-

sions [21, 22]. Work was undertaken to analyse buggy-but-benign Firefox extensions that have the ability

to introduce vulnerabilities in otherwise secure web-pages and to propose a new browser extension system

[3]. Barth et al. proposed a system, adopted by Chrome’s extension architecture and security model,

that contains three core fundamentals: least privilege, privilege separation and strong isolation.

Least Privileges

The Chrome extension security model implements the principle of least privilege4. This attempts to

ensure that an extension only has the privileges needed for its “legitimate purpose” and functionality.

To implement this, the Chrome browser only grants the privileges explicitly requested in an extension’s

manifest.json file.

If a malicious web-page usurps a vulnerable extensions privileges, it may only have a small subset of those

it needs to carry out its malicious intent. However, as extensions often request, and are granted by users,

more privileges than required, this mechanism alone is not enough to guarantee an extension has the

least privileges necessary. Despite this, Kapravelos et al. noted that benign and malicious extensions do

not differ greatly in terms of permissions granted and that more permissions are not necessarily required

to carry out attacks. Instead, according to Kapravelos et al., it is the use of the Chrome extension API

that allows malicious attacks [6].

Figure 2.2: Extensions are split into multiple components such as content scripts and extension cores
and are protected by process boundaries and the isolated worlds concept.

Privilege Separation

The idea behind privilege separation is to prevent malicious web-pages from gaining all of the capabilities

of a buggy-but-benign extension [3]. As Chrome extensions can be granted quite powerful capabilities

(such as the ability to view what tabs are open), unintentionally granting these capabilities to a malicious

web-page can be quite serious.

4The principle of least privilege is also known as the principle of least authority or principle of minimal privilege.
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To prevent against this, the extension platform requires that developers split their extensions into three

main components: content scripts, extension cores (also called “background pages” [19]) and native

binaries. The split (excluding native binaries) is shown in Figure 2.2.

Content scripts are injected and executed within a page’s context when the page loads and have the

ability to change a page’s Document Object Model (DOM)5. Content scripts can directly interact with

potentially malicious web-pages in which they have been inserted. To prevent the malicious page from

usurping the content script’s powerful extension APIs [24], they do not have any. Instead they must

exchange messages and communicate with the background page.

Background pages are either persistent, which are always open and executing, or event-based, which are

opened and closed as needed [19]. They have access to the extension API that has been granted and all

standard Web APIs [8], but are insulated from untrusted web content. In order to communicate with

untrusted content, the background page can either communicate with a content script or issue a web

request.

Native binaries can run arbitrary code and access the browser’s API. Although native binaries could

contain vulnerabilities, they are not often used and undergo a manual security review before being

permitted in the CWS [2]. As a result, we do not discuss native binaries further nor do we consider

attacks that could be carried out by them.

One limitation of privilege separation is that the onus is on developers to properly insulate their extension

core from their content script. If developers are not security conscious and do not assume that their

content script could be compromised, they may unintentionally grant their content script more privileges

than necessary. This risk can be exposed through many “mistakes” such as:

• Allowing the extension core to execute arbitrary code passed from a content script by using the

eval function.

• Allowing the (indirect) use of an sensitive API function from a content script by passing the para-

meters to the extension core and executing it there.

Strong Isolation

The Chrome extension architecture attempts to isolate extension components from each other and from

web-page components. It uses three methods to achieve this.

The first consists of assigning a security origin to each extension that remains the same across different

versions. This allows the extension system to reuse the web’s same-origin policy which in turn isolates

extensions from web-pages and other extensions of different origins.

The second method consists of running each extension component - the content script, extension core

and native binary - in a different native process as shown in Figure 2.2. The extension core and native

binary both run in a dedicated process whereas content scripts run in the same process as the web-page

they are injected into. This mechanism protects against browser errors since no JavaScript objects are

leaked between processes and API methods cannot be accessed from content scripts.

5The DOM is a programming interface that models a HTML document as a tree structure where each node is an object
representing a part of the document [23].
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The final method consists of executing content scripts in their own isolated world. This mechanism is

designed to protect content scripts from malicious websites6. Every content script injected into a page can

access the DOM through different JavaScript objects7 but cannot access variables or functions created

by the page or other content scripts. Moreover, a web-page’s scripts executing within the main world

cannot access any of the variables or functions created by content scripts. If scripts executing within

different page wish to communicate, they must do so via the shared DOM (using window.postMessage

for example) [25].

Most updates to the JavaScript objects that represent the DOM are reflected across all objects, ensuring

all scripts view the same page state. However, when a script modifies a non-standard JavaScript object

(such as document.foo), the update is not reflected in any of the other (document) objects [3].

The isolated worlds concept also fortunately prevents conflicts (such as differing versions of the popular

JQuery library) between a content scripts and page scripts. This is important as content scripts can

be granted privileged functionality from their associated background page that should not be accessible

from other scripts [25].

2.2.2 Content Security Policy

The Content Security Policy (CSP), developed and maintained by the W3C, is a mechanism to reduce the

risk of content injection vulnerabilities such as cross-site scripting (XSS) [26]. Chrome’s extension system

implements the general CSP concept to increase security of extensions by preventing (by default) the

ability to inject, include and execute remote JavaScript code [27] in an extension’s privileged background

page.

CSP restricts the privilege of extensions but allows developers to optionally relax the default behaviour

[2]. In an attempt to mitigate the risk introduced by extensions relaxing the CSP, Chrome warns users

downloading extensions of modifications that may make them vulnerable to attacks [4]. The CSP is

an additional layer of security over the permission system (and the least privilege principle), but is not

intended to be a replacement.

Although it helps protect users and benign-but-buggy extensions from malicious third-parties, it only

adds small hurdles to sophisticated and determined malicious extension developers. It is important to

note that CSP restricts what an extension’s background page can do but not what an extension’s content

script can do. As a result, malicious extensions can still perform XSS by executing JavaScript from other

pages (granted they have the permissions to communicate with the external page) within their content

script and querying their background page’s privileged browser APIs.

Dynamically Executing JavaScript

By default, eval, window.setTimeout and other functions that allow developers to execute JavaScript

passed as a String are disabled in an extension’s background page. This is done because the code eval

executes can access everything in the extension’s environment and can call powerful Chrome APIs, with

the ability of weakening users’ security [28].

6A malicious web-page could have been originally benign but modified by an active network attacker.
7There is a one-to-many relationship between the DOM and its representative JavaScript objects
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For benign-but-buggy content scripts, this defends against malicious websites using common cross-site

scripting (XSS) attacks [27]. It effectively makes it impossible for an extension to unknowingly execute

malicious code provided by a malicious remote resource or web-page.

However, this policy is less effective against malicious extensions because it is still possible to use eval

and other related functions by adding ‘unsafe-eval’ to an extension’s CSP. This is necessary because

many popular frameworks still exist that require eval.

It is also possible to use eval in a safer environment called “sand-boxes”. When running eval within a

sand-box, the executed code can not access any of the extension’s data or the extension’s high-value APIs.

To implement this, developers specify which extension files should be run within their own sand-box and

when they are loaded, they are run from a different origin and denied access to the Chrome API.

Inline JavaScript

By default, inline JavaScript is also prohibited. This is because it exposes several attacks similar to those

exposed by eval (instead of executing code using eval, one could just insert it into the HTML page within

script tags). This policy ensures developers create extensions with a separation between HTML content

and JavaScript behaviour.

Similarly to eval, it is possible to relax the policy by providing the base64-encoded hash of the source

code in the extension’s CSP [29]. For example, in order for an extension to inject the following element

<script>alert(’Hello, world.’);</script> into a page’s DOM, see the manifest.json file in Listing

1.

{

"content_security_policy": "script-src `sha512-YWIz...OAo='",

}

Listing 1: A manifest.json file that allows an extension to inject a script element into a page’s DOM.

Although this “relaxes” the policy regarding inline JavaScript, it still prevents many XSS attacks that

are caused by dynamically executing unknown malicious code as the developer would need to know what

the code injected is to create a hash.

Remote Scripts and Resources

Remote scripts and object resources cannot be loaded and only local scripts or objects, contained within

an extension’s package, are permitted. Similarly to the restrictions on eval and in-lining JavaScript, this

prevents an extension executing unknown malicious code. In particular, it also defends against active

network attackers who perform man-in-the-middle attacks and supply malicious resources instead of those

requested. It is also possible to relax this policy by white-listing secure origins8 in an extension’s CSP

[27] (see Listing 2).

8The following schemes: blob, file-system, HTTPS, and chrome-extension are considered “secure”. Note, HTTP is not.
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{

"content_security_policy": "script-src `self' https://fb.com; object-src `self'"

}

Listing 2: A manifest.json file that allows remote scripts from https://fb.com to be loaded and
injected into a page’s DOM.

2.3 Threats

Although many attacks are possible when malicious extensions execute within a victim’s browser, some

are easily monetised and are therefore more common in the CWS. In this section, we discuss these attacks.

2.3.1 Facebook Hijacking

Facebook hijacking has been present since at least 2012 when initial reports emerged. This threat involves

malicious extensions “hijacking” a victim’s Facebook account and performing actions (such as sharing or

“liking” posts, posting spam messages or sending them via private chat and befriending users) without

the victim’s consent.

According to analysis work by Google, this threat has been present in over 4,809 extensions between

2012 and 2015 [5]. Often these extensions provide actual functionality such as adding a “dislike” button,

removing Facebook’s “timeline” (to increase the victim’s productivity) or changing the websites theme.

Attackers monetize this threat by posting spam messages, inflating “likes” or friend counts as has been

observed on Twitter, a different social media platform. Brazilian attackers in control of malicious browser

extensions have been discovered selling packages of 1,000, 10,000, 50,000, and 100,000 “likes”, for $28,

$248, $1,164, and $2,196 respectively [30].

2.3.2 Ad Injection

Ad injection is the second most popular threat present on the CWS, having been discovered in 3,496

different extensions between 2012 and 2015 [5]. This “attack” replaces or inserts advertisements on a

web-page with custom ones provided by the extension. Although not explicitly prohibited by the CWS

developer agreement, unless injected without user knowledge, it negatively impacts owners of a website

by directing revenue away from them and towards extension developers [31].

Other similar attacks involve changing HTTP referrer headers and links on web-pages that point to e-

commerce websites like Amazon. These services often have affiliate programs that reward third parties

for sending them traffic. Instead of the web-page owner collecting that revenue through the affiliate

program, malicious extensions often substitute their own affiliate IDs in and reap the rewards.

2.3.3 User Tracking

This threat involves malicious extensions inserting “tracking pixels” to track users and relay information

(such as web-pages visited) to third parties without the consent of the users [5]. This can be used

for advertising purposes. A similar threat leaks search queries to third parties which helps improve

advertising results.
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2.4 Permission Study

Various papers have studied the effect of Chrome’s extension permission model to determine if permis-

sions reduce the severity of extension core vulnerabilities (in the case of benign extensions) [2], indicate

extension malice [6, 5] and ensure that users know the capabilities of a particular extension [4].

2.4.1 Permission Model Shortcomings

Chipman et al. identified areas where Chrome’s permission model fails to inform users of an extension’s

capabilities [4] and they suggest changes to the model to prevent these discrepancies. They argue that a

permission model that does not correctly convey the capabilities of an extension to a user, leaves room

for exploitation, potentially by malicious extensions leveraging this discrepancy. Chipman et al. also

built an educational extension that teaches users about permission model loopholes and to be more wary

of granting unnecessary permissions to untrusted extensions.

Chrome Warnings

Similar to how Chrome notifies users when an extension modifies its CSP, Chrome also alerts users when

extensions request special permissions that could pose security risks. Whenever a user tries to install

an extension that has requested additional special permissions, via the extension’s manifest.json file, a

pop-up similar to that in Figure 2.3 appears.

However, not all permissions are considered to pose security risks and therefore display the warning “Re-

quires no special permissions” to the user. Some of these non-special permissions include: browsingData,

cookies, sessions and webRequest. To uninformed everyday extension users, there is no indication that

the extension has capabilities to these resources. Chipman et al. explore potential attacks and exploits

that could be leveraged using only non-special permissions.

Figure 2.3: An example pop-up that Chrome displays, providing information of an extension’s permis-
sions, when installing the “Google Dictionary (by Google)” extension.

Threats

The extension built was able to exploit various attack vectors using only non-special permissions that

include: preventing a computer from suspending by itself, spamming users with notifications, writing

arbitrary text to the system’s clipboard and performing a denial-of-service attack on the user’s browser

by repeatably closing all tabs. Most of these present a mild annoyance to victims and are difficult to
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diagnose as the extension “Requires no special privileges”. However, it is possible to potentially identify

users with reasonable confidence using only non-special permissions.

2.5 Analysing Extensions

Previous work has been done that attempts to detect malicious behaviour in browser extensions. In

contrast to other work that has suggested improvements to the Chrome extension security model (many

of which have been incorporated), this section focuses on tools that use dynamic analysis to monitor

execution and corresponding network traffic to determine if a given extension is suspicious or malicious.

Some tools also use limited static analysis to check for signs of malice: code obfuscation, high permissions,

and similarity to other malicious extensions.

2.5.1 Hulk: Dynamic Extension Analysis

Kapravelos et al. presented an early tool, Hulk [6], in the first broad study of malicious extensions,

which attempts to detect malicious behaviour in Chrome extensions. Hulk labels extensions as benign,

suspicious and malicious by applying various heuristics. The latter two indicate the presence of potentially

or definitely harmful actions respectively.

The tool executes and monitors extensions, using several novel techniques that try and elicit malicious

behaviour. Their main contributions are the techniques they present to elicit malicious behaviour (often

trying to mask itself) from extensions.

URL Extraction

Most extensions execute within the contents of web-pages but many do not and cannot execute on web-

pages of different origins. To trigger extensions’ (potentially malicious) functionality, a URL or set of

URLs must be carefully chosen and loaded. Hulk uses three sources to extract URLs from:

1. The manifest file of an extension specifies the URLs that its content scripts can be injected into

and also specifies the extensions’ cross-origin permissions. URLs are generated that match those

in the manifest.json file. If the file specifies <all urls> or many URLs (using wild-cards), it

becomes difficult for Hulk to generate URLs where malicious behaviour is elicited.

2. The source code of an extension may contain static, hard-coded URLs. Hulk “visits” those URLs

as well, in an attempt to elicit malicious behaviour that is only triggered on a small subset of

websites.

3. Popular websites that have been previously targeted by malicious extensions. Kapravelos et

al. continuously improved their list of popular websites as they discovered attacks on particular

domains.

However, Hulk’s URL extraction has various limitations. It does not consider that pages loaded from

the same URL may be different due to a client’s location or time. Web-pages that require users to sign

in create difficulties. Hulk attempts to solve these by using pre-existing user credentials when visiting

popular pages but this may miss malicious extensions targeting specific individuals.
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HoneyPages

Some extensions execute malicious behaviour only if there are certain elements on a given page. For

example, a malicious extension might replace advertisements with its own - but only in the case when

ads already exist on that page. Hulk uses special pages called HoneyPages that try and satisfy all the

conditions an extensions requires to trigger malicious behaviour (e.g. an advertisement exists).

To do this, HoneyPages have additional JavaScript code that override functions used to query the DOM

tree of a particular page. When an extension queries for an element in the DOM, the HoneyPage auto-

matically creates and injects the element, and then returns it to the extension. In doing this, HoneyPages

dynamically create a page with the hope of extensions exhibiting additional malicious behaviour [6].

HoneyPages also have many limitations and introduce a mechanism that malicious extensions can leverage

to avoid detection.

• Hulk assumes that an extension requires a particular element to be part of the DOM when it queries

for it, when in fact the extension might prohibit it. Extensions might elicit less behaviour than

without the element.

• “Multi-step querying”, where extensions require elements have additional properties, was not sup-

ported at the time of publishing Hulk.

• Extensions can determine whether they are currently under analysis by querying for an element

that they know does not exist. If the element is successfully returned, the extension knows it is

currently executing on a HoneyPage and may decide not to execute maliciously, therefore avoiding

detection. Similar evasive behaviour is common in malicious software.

Triggering Events

JavaScript in the browser is event-driven. Web-page and extension scripts can register callbacks that

are triggered by browser-level events (e.g. mouse clicks). Additionally, extensions are given access to

more browser-level events than normal scripts. For example, extensions are provided with the chrome.-

webRequest.onBeforeRequest function that allows them to intercept and change outgoing HTTP re-

quests. Kapravelos et al. complement HoneyPages with event handler fuzzing which invokes all event

callback functions that were registered using the chrome.webRequest API by dispatching mock event

objects.

However, Hulk only triggers events registered via the chrome.WebRequest API and does not consider

event handlers registered via the EventTarget.addEventListener method. As a result, Hulk is likely to

not trigger all possible extension behaviour and is therefore not guaranteed to trigger possible malicious

behaviour.

Monitoring

Hulk uses URL extraction, HoneyPages and an event handler fuzzer to attempt to elicit all malicious

extension behaviour. In order to analyse the extensions that are eliciting this behaviour, Hulk uses

multiple monitoring hooks.
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Hulk monitors the extension API and logs9 any time an extension registers a chrome.webRequest call-

back. It also logs any changes made to HTTP requests using the registered callbacks, such as the removal

of security-related HTTP headers, which expose a web server or user to various security risks. For ex-

ample, by removing a web servers CSP HTTP response headers, a malicious extension can inject code

into a page despite the server specifically disallowing it.

Hulk also logs all JavaScript code introduced by the extension being analysed including context scripts

and remote scripts. The code is logged to provide a complete picture of the extension’s functionality in

the case that it is flagged as suspicious. Similarly, a proxy that intercepts HTTP and DNS requests is also

used for logging requests for remote scripts and objects and to identify scripts that contact non-existing

domains [6].

Analysis

To analyse and label extensions, Hulk uses monitoring, logs and has a set of heuristics. By monitoring

the extension API, Hulk labels an extension as malicious if it uninstalls other extensions, prevents un-

installation of the current extension, manipulates HTTP headers or attempts to inspect sensitive DOM

elements (such as a password field). If an extension modifies a HTTP request, executes remote code or

attempts to contact a non-existing (potentially blacklisted) domain, it is marked as suspicious. Otherwise,

the extension is deemed benign.

One limitation of Hulk is that it flags many extensions (4,712 of the 48,332) as suspicious and has a low

precision [5] which subsequently requires extensive human analysis to promote to malicious or discard as

benign. Additionally, Hulk can completely miss malicious extensions that interact with a page without

a user knowing (e.g. clicking a “like” button on Facebook)10 and may label them as benign.

Moreover, although behaviours such as changing or removing HTTP headers, uninstalling extensions, or

preventing the uninstallation of the current extension are exclusive to malware, they are very rare. These

behavioural signal were shown to have a precision of 86%, 96% and 100% and recall of 2%, 0.5% and

0.1% respectively [5], emphasising their rarity. This limits the effectiveness of the Hulk tool in detecting

malice.

2.5.2 WebEval: Fighting Malicious Extensions on the CWS

Jagpal et al. at Google also presented a similar tool, WebEval [5], which detects malicious Chrome

extensions on the CWS and returns a concrete verdict of extension malice. WebEval expands on previous

work by analysing an extension’s behaviour, code and its developers’ reputation. As WebEval was

deployed, at the time of publishing, and protecting the CWS, attackers are more likely (in comparison

to Hulk, for example) to adapt their malicious extensions to evade detection. WebEval uses a classifier

that takes many extension signals and also uses human experts to validate claims that an extension is

malicious before removing it from the CWS and to correct off model-drift caused by evasion.

9Chrome provides a logging infrastructure used to monitor the activity of extensions.
10Kapravelos et al. did find a malicious extension, creating and inserting fake Facebook status updates, by visually

inspecting the HoneyPage, which was polluted with spam posts.
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Static Analysis

Unlike Hulk, WebEval uses simple static analysis to give its classifier and human experts more information

regarding the extension and compliment the tools dynamic part. This analysis is not necessarily complete

as extensions with certain permissions can request remote script or resources.

WebEval scans for multiple types of code obfuscation that could indicate malice: minification, encoding

and packing. The tool also compares code, file names, and directory structure to that of other known

malicious extensions to detect near-duplicates. This aims to prevent other developers uploading the same

malicious libraries or uploading a modified malicious extension. WebEval also notes what permissions

each extension requires which suggests an extension’s capabilities.

Furthermore, due to WebEvals integration with Google’s CWS, WebEval also monitors where developers

log in from, their email address, the number of extensions developed and the age of the developer account.

This attempts to catch fake developer accounts mostly used for publishing malicious extensions.

If an extension passes initial analysis and is published on the CWS, meta-data gathered from installations

is also used in the following rounds of analysis. This includes the number of installs, ratings and average

rating the extension receives.

Dynamic Analysis

Similar to Hulk, most of the signals that determine if an extension is malicious come from dynamic

analysis. WebEval uses black-box testing by running extensions in sand-boxed test suites that simulate

common browsing habits and examines changes to the sand-box. The dynamic analysis produces a list

of network requests, DOM events and Chrome APIs calls which are supplied to WebEval’s classifier and

to human experts.

WebEval runs extensions in a sand-boxed environment, a Windows virtual machine, with a system monitor

and in-browser activity monitor. The system monitor tracks low-level environment changes such as file

system changes, Chrome setting changes and Windows operating system settings. The in-browser activity

monitor, built into Chrome to prevent extension interference, logs all DOM events and Chrome API calls.

Additionally and very similarly to Hulk, WebEval uses a network logging proxy that also servers as a replay

cache, ensuring the test suites are as deterministic as possible across executions, for future human expert

verification [5].

Unlike Hulk’s event handler fuzzer, WebEval uses a set of behavioural suites that attempt to replay

realistic browsing scenarios to trigger malicious behaviour in the extensions under analysis. WebEval

takes advantage of human experts by having them record complex interactions (including querying Google,

using Facebook and shopping with Amazon or Walmart) with web-pages that are then replayed. These

behaviour suites are improved and added to as new threats arise. In order to test a wide variety of

browser states and actions, WebEval also uses the generic test suite created by Kapravelos et al. which

utilise HoneyPages and Hulk’s fuzzer.

Similar to Hulk, and other dynamic analysis tools responsible for detecting malicious software, sophistic-

ated malicious extension developers may be able to evade WebEval’s detection using cloaking. Malware

can delay execution until after evaluation or fetch benign versions of remote JavaScript until after eval-

uation. This is a serious issue as extensions often successfully employ methods to determine if they are

under evaluation (for example, by fingerprinting the evaluation environment or IP address).
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Relevance of Individual Signals

WebEval has been extremely useful in surfacing malicious extensions and has had, over an analysis period

of three years, a recall (the number of malicious extensions flagged) of 93.3% and precision (those that

human experts agreed with) of 73.7%. However, the work carried out by Jagpal et al. in presenting the

most relevant signals of malice according to their classifier has proved a great contribution in relation to

this project.

DOM Operations Precision Recall

eval 10% 76%
Window.navigator 19% 59%
XMLHttpRequest.onreadystatechange 31% 56%
XMLHttpRequest.open 21% 53%
Document.createElement 20% 47%
Window.setTimeout 18% 46%
Node.appendChild 20% 45%
HTMLElement.onload 25% 30%
HTMLScriptElement.src 51% 25%
Window.location 23% 12%

Table 2.1: Top 10 DOM operations observed (recall) during WebEval’s dynamic evaluation in descending
order.

The most relevant signal for detecting malice in extensions are their Chrome API calls and DOM op-

erations (see Table 2.1). Although the majority of extensions inject scripts (through CSP relaxing),

generating network requests and adding new DOM elements, malicious extensions have a different set of

events triggered and load resources from similar domains. WebEval uses a machine learned model to de-

termine which resources are commonly requested by malicious extensions. As you can see, certain DOM

operations indicate malice with quite high precision and if we were to alert users of extension actions, it

would be wise to prioritise by precision.

Jagpal et al. also discuss the relevance of different permissions. They note that while malicious extensions

tend to request the tab permission (84% requested) or the ability to generate network requests (39%

requested), these are also highly prevalent in benign applications. They consider the abundance of coarse

permissions a limitation of the Chrome permission model, as they do not indicate whether an extension

has malicious intent.

2.6 Sensitive Data Tracking

A lot of work has also been done on tracking sensitive data as it flows through browser-based systems and

this has been previously used to detect malicious extensions. Hulk actively tracks the flow of sensitive

data, considering any sensitive information leaving the browser via an extension as theft and therefore

malicious [6]. Other work has utilised data flow tracking and tainting to prevent cross-site scripting

attacks and protect online accidental data disclosure.
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2.6.1 PHP Aspis: Taint Tracking

Papagiannis et al. introduced PHP Aspis [32], a tool that applies partial taint tracking at the PHP

language level to prevent code injection vulnerabilities, such as cross-site scripting or SQL injection

attacks. PHP Aspis performs taint tracking at the source code level by rewriting it to track the origin

of characters in strings and then sanitises untrusted values to prevent code injection. Consequently, the

tool does not need complex modifications to the language run-time.

The PHP Aspis tool does not directly deal with malicious extensions but instead the general issue of

tracking sensitive data through a system. Source code developers are assumed to be trusted and not

adversaries.

Run-time Taint Tracking

According to Papagiannis et al., run-time taint tracking is composed of three steps:

1. Data entry points. Sensitive and untrusted user data entering the system are “tainted” to specify

that they are user provided. The taint meta-data can vary as long as it captures the origin.

2. Taint propagation. As the system executes, any data that depends on “tainted” data is also

tainted. For example, concatenating a tainted string with another would result in the returned

value being tainted. This in turn propagates the taint meta-data throughout the system.

3. Guarded sinks. Every function that can create a code injection vulnerability (e.g. eval) is

intercepted. If passed tainted data, it then calls a corresponding sanitised function or completely

aborts the call. Otherwise, it executes as normal. This can involve replacing insecure low-level

functions with secure higher-level ones and can consequently have a negative impact on performance.

Partial Taint Tracking

As not all code is as prone to vulnerabilities, and due to the performance overheard of complete taint

tracking, PHP Aspis uses partial taint tracking by focusing on third-party Wordpress plug-ins.

PHP Aspis first modifies code that requests data from users and taints the user provided data. The tool

also splits the code base into tracking (in this case, third-party plugin code) and non-tracking code. In the

tracking code, PHP Aspis performs taint propagation and guards sinks as in run-time taint propagation.

Whereas in non-tracking code, PHP Aspis performs no taint tracking, assuming the code to be secure.

As Wordpress third-party plug-ins can be seen as analogous to Chrome extensions, the partial taint

tracking principles may be applicable to JavaScript extensions.

Transforming Extension Code

Although the tool is responsible for preventing code injection attacks on benign-but-buggy web applic-

ations (such as Wordpress plug-ins), the same principles can apply to tracking sensitive information in

systems with malicious components. For example, it is possible to transform a Chrome extension’s content

script to capture potentially malicious DOM operations. Another possibility is to introduce additional

JavaScript, as in Hulk’s HoneyPages [6], to override suspicious DOM operations.
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In Listing 3, we present some trivial JavaScript code that when added to an extension’s code, overrides

the DOM method Node.appendChild to first prompt a user for their permission. One limitation of is

that sophisticated attackers can circumvent this transformation by calling the Node.oldAppendChild

method instead.

var oldAppendChild = Element.prototype.appendChild;

var extensionName = "(Malicious) Ad Blocker";

Element.prototype.appendChild = function() {

var message =

"Allow '" + extensionName +

"' to insert an element into this page?";

if (confirm(message) == true) {

oldAppendChild.apply(this, arguments);

}

};

document.body.appendChild(document.createElement("div"));

Listing 3: JavaScript code that transforms the Node.appendChild method to request the user’s per-
mission before executing.

Dynamic Features

An alternative approach could be to transform the calls directly, replacing calls to Node.appendChild

with calls to a different method. However, a sophisticated attacker can still potentially overcome this

by dynamically executing remotely fetched code (e.g. by using the eval function). PHP Aspis solve

this dilemma by rewriting the dynamically provided code at run-time [32]. Nonetheless, if an extension

requests eval privileges, a similar approach is possible with JavaScript but would likely have negative

performance impact. PHP Aspis attempts to address this performance impact by using a caching mech-

anism when available but still incurs a significant performance penalty if taint tracking is not restricted

to subsections of PHP applications [32].

Limitations

Unfortunately, PHP Aspis suffers from false negatives as the tool does not correctly propagate taints

through built-in library methods, through calls that exit tracking contexts and when data flows to external

data stores such as a file system or database [32]. As a result of this limitation, PHP Aspis cannot

guarantee that all XSS vulnerabilities are prevented. Papagiannis et al. substantiate this claim by noting

that two Wordpress plugin injection vulnerabilities reported via Common Vulnerabilities and Exposures

(CVE) [33] reports.

2.6.2 Dynamic Spyware Analysis

Egele et al. present a dynamic analysis approach that tracks the flow of sensitive data throughout a

Browser Helper Objects (BHOs)11 in the IE browser [7]. Their approach is designed to prevent the loss

of sensitive data to spyware, code that monitors and steals the behaviour of users and their data. This

is closely tied with the user tracking threat that is present in some malicious extensions. Similar to

11BHOs are separate and different from the IE plug-ins previously mentioned. They rarely implement complex function-
ality or user interfaces.
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WebEval, their tool allows human experts to follow the flows of sensitive data in a system in order to

determine malice.

Their approach presented uses dynamic taint analysis to follow sensitive data (such as URL and web-page

information) as it propagates through IE and any loaded BHOs. Whenever a BHO attempts to transmit

sensitive data on the network, the helper object is classified as spyware. Their technique does not involve

analysing one “extension”, but instead classifies all loaded BHOs. Egele et al.’s approach takes into

account both data dependencies (as in PHP Aspis) and control flow dependencies.

A data dependency ensures that operation or assignment that uses a tainted value (such as string con-

catenation) returns a tainted value. On the other hand, control flow dependencies ensures that variables

are tainted if there is a dependency between its value and a tainted value. It is possible to write code

that avoids taint analysis by abusing execution control flow. The contrived code example in Listing 4

shows how a sensitive variable, data, can be leaked if control flow dependencies are not employed. More

complex code can similarly copy strings and other objects without tainting.

var data; // Tainted Boolean value

var secret; // This variable remains untainted and can be leaked

if (data) {

secret = true;

} else {

secret = false;

}

Listing 4: Leaking sensitive information via control flow manipulation.

Direct Control Dependencies

To mitigate the risk of a sophisticated attacker using the control flow to launder tainted data, the

researchers use direct control dependencies. This process involves tainting the result of an operation if

the execution depends on the value of a tainted variable (as shown in Listing 4). A taint engine examines

all conditional branches visited during execution and for each one that depends on a tainted variable, it

taints all operations in that branch’s scope using static analysis.

Operating System Awareness

Determining if a BHO is attempting to steal sensitive data (for example, by writing to a hidden log) is

made more difficult by the fact that both BHOs and IE run in the same process. Egele et al.’s approach

runs IE and BHOs in a Qemu, an open source system emulator, to facilitate monitoring. This introduces

an interesting problem: what actions performed in these IE processes are executed in the context of a

BHO. This issue is solved by pushing a flag onto the stack that indicates execution is in a BHOs context.

For every following instruction, if the stack pointer is below the flag, then it is executing within a BHOs

context.

Automated Browser Testing

Similar to previous tools that attempt to detect malicious extensions, Egele et al. built an automated

browser testing suite that mimics the browsing habits of users. Interestingly, they recorded browsing
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behaviour using a Firefox extension and then replayed it in IE using a Windows application. The

application captures URLs visited and forms fields that are filled in and automatically replays the action

of visiting these pages and submitted the forms.

2.6.3 BrowserFlow: Data Flow Tracking

Papagiannis et al. introduced imprecise data flow tracking, and built a Chrome browser plug-in12,

BrowserFlow [34], that notifies users if they accidentally expose potentially sensitive data to external

cloud services (e.g. Google Docs). BrowserFlow defends against trusted-but-careless users that may unin-

tentionally leak, mainly by copy-and-pasting, sensitive data to third-party web-services, thereby breaking

data disclosure agreements.

Text Disclosure Model

Papagiannis et al. also introduced a Text Disclosure Model (TDM) to represent the action of copy-and-

pasting data between browser tabs. In this model, each text segment on a page is associated with security

labels, which are sets of tags representing the segments’ sensitivity based on the browser tab in which they

were created. Tags can be used to represent entire categories of sensitive data (e.g. interview-data) or

specific data (e.g. product-announcement-x) and are indirectly assigned by data administrators [34].

Imprecise Data Flow Tracking

Unlike the PHP Aspis tool [32] or Egele and colleagues’ work with sensitive data tracking in BHOs [7],

BrowserFlow does not require modifications to the browser or system binaries needed to add taint labels to

data flowing through a system. Instead, BrowserFlow implicitly and imprecisely tracks data propagation

by assigning tags to new text segments based on the similarity between it and other previously examined

(and tagged) segments.

Tag propagation is imprecise as modified data is tracked as long as it maintains a certain level of similarity

with source data. BrowserFlow does this by comparing the fingerprints - a set of carefully selected hashes

- of text segments [34].

User Alerts

Instead of completely blocking sensitive data leakage, the BrowserFlow plug-in alerts users when acci-

dental data disclosure is occurring by changing the background colour of text elements containing sensitive

data to red. Furthermore, if the data is not permitted to flow to a particular untrustworthy cloud service,

it is transparently encrypted before being sent to the server.

Users also have the ability to declassify sensitive data by suppressing tags associated with a particular text

segment. Every time a user wishes to disclose the same text segment, they must perform tag suppression.

As this may result in users disclosing sensitive information, BrowserFlow stores information about the

tag suppression for future audit [34].

12Although not elaborated upon, it is likely BrowserFlow is a Chrome extension or application.
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2.7 Summary Of Previous Work

In Table 2.2, we compare the 5 existing solutions we researched, which attempt to detect malicious

extensions or sensitive data leakage, across multiple dimensions. These approaches directly influenced

many of our project’s design decisions.

Hulk WebEval PHP Aspis Dynamic
Spyware
Analysis

BrowserFlow

Static Analysis X X

Automated, Sand-boxed
Browser Analysis

X X X

Run-time Analysis with
Browser Instrumentation

X X

Code Transformation X

Human Verification X X X

Table 2.2: A comparison of existing solutions researched across various dimensions.

The most common solution we observed in previous work has been to automatically analyse extensions

within a sand-boxed environment. The main limitation of this approach, as noted by Kapravelos et al.,

is that sand-boxes can be easily fingerprinted by malicious extensions and they can in turn suppress their

malicious intent while under analysis [6].

The PHP Aspis tool statically transforms source code [32] and WebEval incorporates meta-data in their

model [5]. The former can only do this as Papagiannis et al. do not consider source code developers as

adversaries and suffers from false negatives. Moreover, the latter only uses static analysis to supplement

its main analysis.

Only the Dynamic Spyware Analysis project presented by Egele et al. actually modifies and instruments

the browser [7]. The BrowserFlow project proposes using a browser extension to analyse data disclosure

at run-time; we consider this browser instrumentation for the purpose of this comparison [34]. The latter

is possible as Papagiannis et al. worked to prevent accidental data disclosure by trusted-but-careless

actors who are not considered malicious.

Both the Hulk and WebEval tools utilised human experts to verify claims of malice in extensions while

the BrowserFlow tool allowed users to declassify sensitive data and suppress associated tags at run-time.

The former tools produced many false positives while the latter gives allows users to suppress warnings

so to not inconvenience them.
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Suspicious Extension Actions

Browser extensions have access to a set of powerful APIs from within their background page [24]. These

provide a variety of functionality ranging from the ability to create and manage bookmarks, to the ability

to observe and edit network requests in-flight. Extension content scripts injected into web-pages also have

access to the page’s DOM tree and the standard web interface which can be used to click buttons, or

read and relay sensitive data to remote servers. A challenge of this project is to determine what web

operations suggest malice when performed by a browser extension.

Unlike previous projects that used many method calls as signals to determine extension malice, our

approach involves intercepting suspicious extension actions at run-time and providing the user with the

capabilities to allow or prevent actions they consider malicious. A user overwhelmed with seemingly

benign action notifications will soon ignore them and consequently, a challenge of this project is to only

intercept actions that can harm users. Actions that indicate malice but aren’t malicious themselves

should not be intercepted. We heavily drew upon an evaluation of DOM operations presented by Jagpal

et al. [5] for inspiration (see Table 2.1).

In this chapter, we define a threat model, explain our decision to analyse extensions at run-time and give

a high-level architectural overview of our solution. By studying previous research, we compile a set of

suspicious operations which include dispatching events, sending and receiving network requests, mutating

the DOM tree and elements. We also present a Chrome feature that allows users to manually configure

the actions that our browser considers suspicious.

3.1 Threat Model

Based on research into threats and popular existing attacks at the hands of malicious extensions, we adopt

a simple and practical threat model where we assume all extensions are malicious and are attempting to

execute malicious operations on web-pages. We assume the main goal of attackers is to realise a Facebook

hijacking, ad injection or user tracking threat as these are the popular attacks (§2.3).

Although malicious extensions can perform attacks from within their background pages (e.g. stealing a

user’s browsing history), we narrow our focus and consider content scripts as the sole attack vector. Our

rationale is that this attack vector is likely due to the high presence of content scripts that can execute

on all web-pages and since content scripts can realize attacks using only standard web interfaces. Unlike

the Chrome extension API, which requests users grant specific permissions to extensions, the majority

of the standard Web API is accessible to content scripts without a fine-grain permission model. We do

not attempt to solve the issue of Chrome’s extension permission model’s shortcomings by purposefully

excluding operations that are only available to Chrome extensions through Chrome’s extension APIs [24].

Lastly, we assume that web-pages and the scripts that they load are benign and that extensions are not
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vulnerable to attacks from malicious web-pages. We aim to protect both browser users and web-pages

from malicious extensions.

3.1.1 Malicious Extensions

For the purpose of this project, we define malicious extensions as any extension exhibiting malicious

behaviour. We consider behaviour to be malicious if it acts against the requirements of a browser user

or acts without their consent or knowledge.

3.2 Run-time Analysis

Previous work has statically or dynamically analysed extensions executed within sand-boxes [5, 6]. One

limitation of these approaches is that sand-boxes can be easily fingerprinted by attackers. Malicious

extensions can take advantage of this limitation by “acting benign” while they are under dynamic analysis

or by dynamically executing code fetched from remote servers. Unfortunately, these analysis methods

ultimately turn extension security into a cat-and-mouse game1 whereby attackers are always attempting

to outsmart and evade analysis tools. These analysis tools do not provide the security guarantees that

we aim to achieve in this project.

Figure 3.1: A high-level architectural overview of our run-time solution. Web API methods executed
by content scripts on web-pages are handled by the Blink Engine (1). If the Blink engine considers them
suspicious, we display a warning dialog in the browser (2) and allow or prevent the action based on
user response (3, 4). Due to Chrome’s multi-process architecture (§2.1.1), some instructions are sent via
Inter-Process Communication (IPC) messages (2, 3).

Our project takes a novel approach when analysing Chrome browser extensions. In order to provide

guarantees about whether malicious behaviour is executing, we analyse the Blink methods executed by

extensions at run-time. If we deem these actions suspicious, we present users with a dialog with which

they can allow or prevent malicious actions (see Figure 3.1).

One limitation of this approach is that malicious extensions may have infected many browsers by the time

they are detected. Fortunately, Google can and has the right to2 remotely uninstall malicious extensions

1A colloquial term to describe the act of constant pursuit, near captures, and repeated escape between two actors [35].
2According to the Google Chrome Web Store Developer Agreement [36]
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from users’ browsers. As a result, this limitation can be easily sidestepped with cooperation from Google

and the Chrome Web Store (CWS).

3.3 Events

Malicious Chrome extensions can perform Facebook hijacking attacks by firing events. For example, a

malicious extension can “like” a particular Facebook post by searching the DOM for a “like” button and

firing a click event on it. Malicious extensions can also utilise events to spread and infect other users by

typing and sending seemingly genuine Facebook posts or private messages that recommend the extension.

As a result, we consider most events fired by an extension as suspicious. We implicitly allow certain

browser events that do not pose a threat to users and that are triggered frequently when content scripts

load (§6.1). There are many ways to trigger events in JavaScript (e.g. calling the click method on

a element object) but fortunately, each eventually calls the EventDispatcher::dispatch method. We

therefore intercept this method despite it not being part of a Web API interface to prevent code duplic-

ation.

3.4 Navigator

The window.navigator object provides information about the identity and state of the user agent (i.e.

the browser application) and allows a web-page to register itself as a handler for particular URL schemes

(including custom ones).

According to the Web Hypertext Application Technology Working Group’s (WHATAG) standard spe-

cifications, information from the window.navigator API “that varies3 from user to user can be used to

profile the user” [37]. Jagpal et al. also frequently observed the use of the window.navigator object in

malicious extensions (i.e. this signal had high recall).

Despite this, we do not intercept these operations when performed by browser extensions for several

reasons.

• According to the evaluation presented by Jagpal et al., the precision was not very high and therefore,

using window.navigation is not a good indicator of malice.

• Users are already prompted (see Figure 3.2) when a web-page attempts to register itself as a handler

for a particular URL scheme and therefore, displaying another prompt would be redundant.

• We believe that everyday users are unlikely to consider a browser extension attempting to learn

more about the particular browser as having malicious intent.

3Many methods in the window.navigator API are deprecated and return constant strings. See window.navigator.-

appCodeName, window.navigator.appName and other fields.
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Figure 3.2: The pop-up prompt that is displayed when a web-page attempts to register itself as a URL
scheme handler. In this case, the scheme registered is "web+scheme".

3.5 Network

A browser extension’s content script requires special permissions in order to communicate with external

pages. For example, in order to send network requests to the origin https://www.google.com from

within a non-Google domain, an extension must include this URL in its manifest.json file.

However, as mentioned in Subsection 2.4.1, Chrome’s permission model has noticeable shortcomings. For

example, when installing an extension with a content script that is injected on https://www.facebook.

com/ pages and that has the permissions to send network requests to the origin https://www.google.com,

users are warned that the extension “can read and change [their] data on https://www.facebook.

com and https://www.google.com” (see Figure 3.3). To an uninformed user, it is not clear that an

extension’s content script injected on https://www.facebook.com can send network requests to https:

//www.google.com (even though it can).

Figure 3.3: The permissions requested from users that allow an extension to be loaded on www.

facebook.com and that allow an extension to send network requests to www.google.com.

Furthermore, a web-page’s Content Security Policy (CSP), that prevents scripts and resources being

loaded from potentially malicious third-parties, does not apply to an extension’s content script. Instead,

content scripts, which run within isolated worlds with unique security origins, must abide by their own

CSP.

By intercepting network requests and responses, and providing the actual network data to users, we
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believe we sufficiently protect against the shortcomings of the permission model.

3.5.1 Network Requests

Since the ability to send network requests from within a content script has very serious consequences (e.g.

a malicious content script could send sensitive user data to a remote server), we decided to intercept all

network requests sent from within a content script by default4.

Even though Jagpal et al. mention the XMLHttpRequest.open method as being a strong signal of malice,

the actual method neither sends a network request nor asserts the provided URL or parameters are

correct. We chose to intercept the XMLHttpRequest.send method as it does in fact send a network

request5 and takes POST data as an argument. We considered intercepting both methods as redundant

and chose not to do so in order to not inconvenience users.

3.5.2 Network Responses

Extensions can also receive remote instructions or scripts to be executed using eval and similar methods.

Jagpal et al. considered registering a XMLHttpRequest.onreadystatechange event handler, which is

called on network responses6, as a key signal and indicator of malice. However, as network responses

might not be read in the XMLHttpRequest.onreadystatechange event handler, we consider this signal

too coarse.

Our approach only intercepts operations that directly read response data. For a given response, we

intercept the first read operation (e.g. XMLHttpRequest.statusText, XMLHttpRequest.responseText,

etc.) and allow or disallow all following read operations based on the user’s decision. This is implemented

using a private CanReadResponse enum and corresponding field in the XMLHttpRequest class (see Listing

23 in Appendix A).

As response data may arrive at different times (e.g. headers arrive before the response body), we

reset the XMLHttpRequest.can extension read response field to XMLHttpRequest::ReadResponse-

Permission::kPromptUser whenever the state of the response changes. This prevents malicious exten-

sions from attempting to read the response object before it has arrived, receiving permission to read it

from the user (as it does not yet contain malicious data) and then reading the response again once it has

arrived with malicious data without needing permission from the user.

We intercept all read operations as malicious servers can disguise attack payloads in seemingly benign

response fields (e.g. HTTP response status). However, as it is trivial for malicious extensions to disguise

responses as benign, it is hard for a user to statically determine if a network response is malicious. We

therefore do not intercept response reads by default.

4Users are still able to configure Chromium to intercept them if they wish (§3.10).
5The XMLHttpRequest.open method must be called before the XMLHttpRequest.send method which could explain why

WebEval used it as a signal.
6The XMLHttpRequest.onreadystatechange event handler is also called when headers are received, the response is loading

and other state changes.
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3.6 Script Injection

Extensions can execute code formatted as strings by using the eval function, with window timers (e.g.

Window.setTimeout), by setting the src field of script elements and via other constructs. Extensions

can use these methods to fetch malicious code when they are certain they are not under evaluation (e.g.

sand-boxed by the WebEval tool) in order to evade detection. It is therefore not surprising that both

the eval and Window.setTimeout methods are common operations in malicious extensions, according to

Table 2.1.

However, unlike events or network requests, we do not consider the act of dynamically executing code as

suspicious - even if fetched from a third-party. In Section 4.5.2, we guarantee that suspicious extension ac-

tions performed within injected script are still considered “extension actions” and we believe intercepting

both operations that execute dynamic code and that execute suspicious actions to be unnecessary.

3.7 DOM Tree Mutation

The ad injection and user tracking threats (§2.3) are only possible if an extension can mutate the

DOM tree. Specifically, a malicious extension must call either the Node replaceChild, insertBefore,

appendChild or removeChild methods to inject advertisements or tracking pixels onto a web-page. Fur-

thermore, Jagpal et al. considered these methods7 as potential indicators of malice. As a result, we

intercept all four methods.

By intercepting the four methods above, we also transitively intercept an extension that mutates the

Element innerHTML and outerHTML fields or executes the Element insertAdjacentText, insertAdjacentHTML

and insertAdjacentElement methods.

Although the Document.createElement method is also a relevant signal according to Jagpal et al., we

decided not to intercept it by default. The element created may not be inserted into the page’s DOM tree

and even if it is, we believe it is redundant to intercept the Document.createElement method considering

we also intercept the methods that insert elements on the page.

Scripts can also replace the entire HTML document by using the Document writeln and write methods.

However, we currently do not intercept these methods as this operation would completely change the

appearance of the page and since users would likely notice this, there is little point displaying a warning

dialog.

3.8 Element Attribute Mutation

Allowing an extension to mutate elements on a web-page can potentially be as dangerous as allowing

them to fire events or mutate the DOM tree. For example, a malicious extension could modify the src

attribute of all hyperlink elements to direct users to a malicious web-page whenever they click the link.

In this case, we would not intercept the click event as it was fired by the user and not the extension.

7In fact, only the Node.appendChild method was listed we consider the others to be synonyms due to they interchange-
ability.

27



Fortunately, many operations that mutate elements are intercepted transitively by intercepting operations

that mutate the DOM (§3.7). They are intercepted transitively as these methods often internally call

Node.replaceChild (or similar methods). Users can choose to intercept the following field mutations

and method calls:

• Element.innerHTML

• Element.outerHTML

• Element.innerText

• Element.outerText

• Element.insertAdjacentHTML

• Element.insertAdjacentText

• Element.insertAdjacentElement

As a result, we only explicitly intercept element attribute modifications via the Element.setAttribute

and Element.removeAttribute methods. By default, we decided not to intercept most attribute muta-

tion in order not to overwhelm the user. However, we consider it suspicious when an extension attempts

to change the “sensitivity” or “description” of an element. This data is stored as the Boolean attribute

data-sensitive and the String attribute data-description and as such, we intercept the methods

Element.setAttribute and Element.removeAttribute if the attribute is either data-sensitive or

data-description.

3.8.1 Sensitivity

The data-sensitive attribute can be set by web-pages to mark certain elements (and their children) as

more sensitive than others. For example, a web-page may mark a login-form or button as sensitive. If

users are overwhelmed by the number of extension action permission prompts, they may choose to filter

out actions performed on non-sensitive elements (§6.4).

Marking an element as not “sensitive” may result in the user not being prompted when an action occurs on

that element. On the other hand, marking many elements as “sensitive” may dilute their importance. We

therefore explicitly forbid extensions from doing this. When we intercept an extension calling Element-

.removeAttribute("data-sensitive") or Element.setAttribute("data-sensitive", false), we throw

an exception without displaying a user prompt.

3.8.2 Description

The data-description attribute can be set by web-pages or extensions to describe certain elements on

the page. This provides more information to users when prompted about extensions actions (§5.7).

Some extensions may have a legitimate reason to change the description of an element. For example, if

they mutate the element, a new description may be required. For this reason, we show users a prompt,

asking them if they would allow the extension to call Element.setAttribute("data-description",

...). However, similarly to the data-sensitive attribute, we explicitly forbid extensions from calling

Element.removeAttribute("data-description").
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3.9 Reading Element Data

As reading data from a web-page can be malicious if it contains sensitive data (e.g. secret tokens8 or

passwords), we also give users the option to intercept extension operations that read element data. We

decided not to intercept operations to read element data by default as this would likely flood users with

mostly benign extension action pop-ups. We intercept the following field mutations and method calls:

• Element.getAttribute

• Element.hasAttribute

• Element.innerHTML

• Element.outerHTML

• Element.innerText

• Element.outerText

3.10 Configuring Suspicious Actions Manually

Despite evaluating and choosing which extension operations to intercept and deem suspicious, we decided

to provide a mechanism for users to configure this themselves. On the “Chromium Extensions” settings

web-page, chrome://extensions/, we added a link so that users can configure suspicious actions separ-

ately for each extension (see Figure 3.4). Once clicked, we display a pop-up dialog (see Figure 3.5) where

a user can select or deselect various classes of operations (provided in a human-readable manner).

This gives browser users the ability to tailor their security preferences for each extension they have

installed. For example, a security-conscious user may consider more actions executed by a newly-installed,

untrustworthy extension as suspicious and may therefore want to be asked permission more often. On

the other hand, a user may wish to allow all operations from a trusted extension (for example, their

password manager).

3.10.1 Implementation

Configuration Persistence

The main challenge we faced when implementing this mechanism was persistently storing a users settings.

If a user restarts their Chrome browser, their settings should remain intact. Configuring the suspicious

actions settings should also ideally have an immediate effect on an extension’s content script running

in another tab (without needing to refresh that page). Finally, according to Chrome multi-process

architecture security best practices, we must ensure a compromised renderer process could not change

the suspicious actions configuration. This would allow a malicious actor in control of the renderer process

to turn off interception for all suspicious actions.

Once created, Extension objects in Chrome are immutable in order to make them safe to use concurrently

across multiple threads. Given an extension identifier, they can be retrieved via an ExtensionRegistry,

8Websites often attach secret tokens to forms to prevent Cross-Site Request Forgery (CSRF) attacks [38].
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Figure 3.4: An example “Chromium Extensions” settings page that has been updated to add a “Config-
ure Suspicious Actions” link (See red border) to allow users to configure the actions that are intercepted
for the “Malicious Facebook Extension” extension.

which also keeps track of enabled, disabled, terminated, blacklisted and blocked Extensions. Each

extension also has its own RuntimeData object that contains mutable data that is accessible on the

UI thread in the browser process. However, RuntimeData does not persist across browser restarts and

therefore was not used as a data store.

Fortunately, a key-value data store exists in the form of StateStore object, which is used to store

per-extension state that needs to persist across restarts. The StateStore object is only accessible

from the browser process which protects against compromised renderer process. The data store maps

std::strings to Values objects which represent data that can be stored in JSON (i.e. of type NONE,

BOOLEAN, INTEGER, DOUBLE, STRING, BINARY, DICTIONARY, or LIST).

We created a SuspiciousActionConfig class (see Listing 21 in Appendix A) that abstracts away the

underlying StateStore and provides default values for keys not already existing in the data store. We

map ExtensionAction representing each class of actions to a BOOLEAN flag.

In order to read a value from the StateStore object, you must provide a callback function to be executed

once the value is read from the data store. When opening the “Configure Suspicious Actions” pop-up,

we perform 9 separate reads to determine the configuration. Although we haven’t noticed any serious

performance overheads from doing this, we could speed this process in the future up by storing the entire

configuration as a JSON dictionary and only reading it once per pop-up.

Dialog

Unlike the user dialog displayed when extensions attempt to trigger suspicious extensions (see Subsection

5.5), the configuration page and associated pop-ups both “live” within the browser process. As a result,

we did not need to send IPC messages from a renderer process to the browser process in order to display

the configuration pop-up.

Instead, we simply modified the chrome extensions configuration page by adding the additional link and
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Figure 3.5: A pop-up dialog that is displayed to users when they click on the “Configure Suspicious
Actions” link in Figure 3.4.

some JavaScript (see Listing 22 in Appendix A) that calls into private9 method in a developer tools class

which in turns displays a dialog.

The custom dialog is fairly simple and follows a similar design and implementation to the warning dialogs

displayed when extensions attempt to execute suspicious actions. The dialog consists of an extension icon,

text field and a series of checkboxes that read from the SuspciousActionConfig when initialised and

write to it when modified (see Listing 24 in Appendix A). We currently do not handle the case where the

configuration dialog is opened within two separate tabs or windows and checkbox state goes out of sync

with the data store due to concurrent user input. A possible resolution would be to have the configuration

view listen to updates to the data store but this has not yet been implemented as we believe this case to

be extremely rare.

3.11 Summary

In this chapter, we define a simple threat model which we use to guide this project. The model assumes

all extension are malicious, treats content scripts as the main attack vector and considers the aim of

attackers to be the realisation of popular threats.

We decide to analyse malicious extensions at run-time, instead of statically or automatically like previous

research, to guarantee attackers cannot evade detection by fingerprinting evaluation environments. We

also propose a solution that involves requiring user permission when extensions execute suspicious actions.

By considering multiple Web API methods, we decide to intercept extension operations that trigger

9In this case private means not exposed to external scripts via a public Web API.
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events, send network requests and modify a page. As users trust certain extensions more or less than

others, we allow them to configure what operations they consider suspicious. Specifically, we give users

the ability to mark operations that read network responses and change or read element attributes as

suspicious.
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Detecting Extension Actions

In this chapter, we first describe the challenge of detecting whether certain operations were executed by

extensions or by other scripts on a web-page. We suggest potential solutions to this challenge that we

considered; these include analysing the frequency and type of events fired, and transforming extension

JavaScript code before execution. Finally, we present a novel approach and implement it within the

Chrome browser such that we guarantee that extension actions cannot evade detection.

4.1 Motivation

In order to intercept suspicious actions so that we can request users to allow or prevent them, we must

first be able to determine, with certainty, whether operations were triggered by an extension. Specifically,

we must be able to ascertain whether Web API methods within the Blink engine are executing as a result

of an extension’s content script.

Moreover, users will inevitably take into account the extensions reputation and trustworthiness when

classifying suspicious extension actions as malicious or benign. As a result, we must establish what

extension in particular is executing a Blink method so that we can present this information to the user.

4.2 Challenges

Detecting the origin of Blink actions is challenging for several reasons. Firstly, the Chrome browser does

not currently provide any way, either through public JavaScript APIs or via a private Blink interface, to

directly determine whether execution is occurring within the context of an extension script or web-page

script.

Secondly, extension content scripts have the ability to insert additional scripts elements into a page’s

DOM, or execute functions via timers and other asynchronous JavaScript constructs. The Chrome

browser treats these inserted scripts identically to script elements originally defined by the web-page.

Specifically, these scripts abide by the page’s Content Script Policy (CSP) and execute within the page’s

main world (§4.5).

A key goal of this project is to guarantee that the interception of suspicious actions cannot be evaded

by a sophisticated attacker. Consequently, a challenge is to ensure that any method executed by a

script element that has been inserted into the DOM tree by an extension is correctly classified as being

triggered by that extension. Otherwise, a malicious extension content script can evade detection by

executing suspicious actions within an inserted script element.

Finally, a challenge is to solve this problem without modifications to the Chrome browser. By doing so,

our solution would hopefully reduce the chance of breaking existing web-pages and extensions, or incurring
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a browser performance overhead. A solution that does not involve modifying the Chrome browser might

also extend more easily to other browsers with extension systems but different architectures (e.g. the

Firefox browser).

4.3 Event Order Analysis

As noted in Section 3.3, malicious extensions can trigger events to perform popular Facebook hijacking

attacks. Instead of attempting to solve the problem of determining if an extension is responsible for

executing arbitrary suspicious actions, we initially focused on solving this for JavaScript events.

The first idea we explored was inspired by Control Flow Analysis (CFA) techniques and involved tracking

the order in which events on a web-page are fired and comparing it to a normal user ordering. Another

similar idea was to measure the frequency of events dispatched and compare this to the normal browsing

habits of users on particular web-pages. Without any changes to the Chrome web-browser1, we could

potentially determine if an event was triggered by a user (e.g. with their mouse, keyboard or other input

device) or triggered virtually by a page or content script.

In general, this solution would be possible since certain events proceed others when triggered by users.

For example, if a user were to trigger a click event on a particular element, an onmouseover event

would be expected to fire before. Any events that do conform to normal ordering would have likely been

triggered by a script.

4.3.1 Limitations

We decided against this approach as several key limitations were evident. By analysing the order or

frequency of events triggered we could only determine if an event was fired by a script (e.g. using the

EventTarget.dispatchEvent method) or by actual user interaction. If we determined the event was

triggered by a script, we wouldn’t know if it was a web-page script or potentially malicious content script

that dispatched it. Even worse, extensions could disguise events they dispatch by simplifying firing other

redundant events, resulting in a cat-and-mouse game. Finally, even if we could detect events triggered

by extension content scripts, it is not clear how we would intercept them and prevent other registered

event handlers from executing.

4.4 Transforming JavaScript Code

The second idea we considered to determine whether certain actions were triggered by extensions involved

transforming content scripts such that suspicious action functions calls would be tainted. This approach

is extremely similar to that of PHP Aspis (§2.6.1), which transforms PHP code to eliminate cross-site

scripting vulnerabilities.

1Similarly to the BrowserFlow plug-in [34], we could track the order of events fired by implementing another browser
extension that registered event listeners for every element.

34



4.4.1 Tainting Extension Events

We first experimented with tainting only extension events for the same reason as in Section 4.3. Our

solution involved adding a Boolean attribute to the Element interface and transforming every method

that triggers an event (e.g. Element.click) into the normalised form Element.dispatchEvent(Event).

By doing so, we only needed to change the interface for the Event constructor and not the declaration

of each method that potentially dispatches events (see Listings 5). Specifically, this approach modifies

the EventInit object, that is passed as an optional parameter to the Event constructor2, to include an

optional extensionOriginating Boolean field.

Although we chose to pass this information via a Boolean attribute, this only conveyed the fact that

the event was triggered by an extension and did not provide information about the extension. Had

we pursued this approach further, we probably would have passed an object with meta-data about the

extension (e.g. the extension’s name, origin and other attributes).

// Before transformation

var targetElement = document.getElementById("target-id");

targetElement.click();

// After transformation

var targetElement = document.getElementById("target-id");

targetElement.dispatchEvent(new Event("click", {"extensionOriginating": true}));

Listing 5: An example content script before and after transformation.

With the Event interface modified in this manner, we can treat Events created by extensions or by the

web-page separately within the Blink engine. We can determine if an Event object was created by an

extension by checking the return value of the Event::extensionOriginating method. Using this, we

can amend the EventDispatcher::dispatch method to prevent extensions from firing events as shown

in Listing 6.

DispatchEventResult EventDispatcher::dispatch() {

if (m_event->extensionOriginating()) {

// Cancel all events that were triggered by an extension before dispatching them.

return DispatchEventResult::CanceledBeforeDispatch;

}

// Rest of the original EventDispatcher::dispatch() function ...

}

Listing 6: Modification of a method in Chrome’s Blink source code to prevent tainted events from being
fired.

4.4.2 Limitations

Dynamic Language

Unfortunately, this method of transforming content scripts has several limitations. Most importantly,

it does not provide strong guarantees about action origins (i.e. it does not guarantee an action was

not triggered by a browser extension) and attackers could abuse this to evade interception. Due to

2This method instantiating Events is a WHATAG standard but not a W3C standard. It is not supported by certain
versions of Internet Explorer.
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JavaScript’s dynamic language nature, an attacker could override the definition of the Event constructor

(and other functions) to prevent our transformation tool from tainting it (see Listing 7). Moreover,

an attacker could trivially obfuscate a content script to prevent a transformation tool from modifying

suspicious function calls (see Listing 8). The PHP Aspis tool does not suffer from these limitations as

the source code being transformed is assumed to be written by trusted developers [32].

// Overrides the Event constructor so that it still works as expected,

// but indicates that an extension did not create it.

oldEvent = Event;

Event = function(type, eventInit) {

eventInit["extensionOriginating"] = false;

return new oldEvent(type, eventInit);

}

new Event("click", {"extensionOriginating": true});

// Event["extensionOriginating"] == false

Listing 7: A malicious content script can override the Event constructor to prevent transformation tools
from tainting it.

var targetElement = document.getElementById("target-id");

// Call targetElement.click() in an obfuscated manner

targetElement["cli" + "ck"]();

Listing 8: A sophisticated attacker can obfuscate calls to suspicious operations to prevent them being
transformed by our tool.

Modifying Web Standards

Another issue with this approach is that it would involve proposing and modifying web standards set

by the World Wide Consortium (W3C) and Web Hypertext Application Technology Working Group

(WHATAG) in order to add caller meta-data to every single suspicious JavaScript method. Without

these proposals being accepted, it is highly unlikely that the Chrome browser would accept the changes

to the Blink engine.

Furthermore, it is unlikely W3C or WHATAG would approve these proposals as there does not currently

exist a cross-browser extension standard [39] and developers must create extensions separately for each

browser. Since some browsers software providers might not need to transform extension scripts in order

to determine if the caller was an extension and others might disagree on what meta-data is required in

order to identify an extension, creating a new standard to satisfy these differences would be non-trivial.

4.5 Isolated Worlds

After rejecting the idea to transform JavaScript code, we began investigating Chrome internals to de-

termine if we can infer execution environment (content script or web-page script) from within the Blink

engine.

From earlier research, we recalled that each content script is associated with its own isolated world and

each web-page script executes within the renderer process’ main world. Within the Blink engine, these
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worlds are referred to as DOMWrapperWorlds as they “wrap” the underlying internal DOM with different

JavaScript objects and prevent access to variables and functions defined in other worlds (§2.2.1).

As extension content scripts and page scripts execute within different worlds, we can determine if exe-

cution is occurring within the context of a content script by inspecting the current world. We use this

hypothesis to propose a novel solution to this challenge that involves using the isolated worlds concept.

To detect if a suspicious Blink method is triggered by a content script, we propose checking if the current

world is an isolated one. If so, we assume execution is occurring within an extension’s content script.

This assumption may be invalid, but we found no evidence of non-extension scripts executing within

isolated worlds. We define this functionality in the Document::isCallerExtension method (see Listing

25 in Appendix B).

4.5.1 Determining The Extension

Assuming that code executing within the context of an isolated world is defined by an extension’s content

script, the challenge is to then determine which extension in particular is executing said code.

Fortunately, Chrome’s extension system implements a general CSP concept [26]. Specifically, code ex-

ecuting within an isolated world must abide by the world’s associated CSP. For example, resources (e.g.

remote scripts or images) embedded into the main world’s DOM or network requests send from within

an content script executing within an isolated world are restricted based on the isolated world’s DOM,

not the main worlds [27].

In order to achieve this, each isolated world is associated with a security origin, containing a URL, and

a CSP. For extension content scripts, the isolated worlds’ security origin URLs contain the extension’s

identifier3. We use these security origin URL to retrieve the current content script’s extension object,

which provides meta-data about the extension including its name and icons, by looking it up in a registry

of enabled extensions (see Listing 9).

If our assumption that all code executing within isolated worlds has been defined by a extension’s content

script proves incorrect, we could easily amend this by checking if there is an associated extension for the

isolated world’s security origin.

const Extension* extension = ExtensionRegistry::Get(source->GetBrowserContext())

->enabled_extensions()

.GetExtensionOrAppByURL(security_origin_url);

Listing 9: A code snippet that retrieves an Extension object, containing extension meta-data, from an
isolated world’s security origin URL.

4.5.2 Tracking Origin World

Unfortunately, there are many ways for a browser extension to execute a script within page’s main world

and not within the extension’s isolated world4 [27] (§4.5.3). By just inspecting the world in which Blink

code is being executed, we cannot guarantee that a browser extension did not create the code.

3An example security origin for an extension’s isolated world might be chrome-extension://

hfaagokkkhdbgiakmmlclaapfelnkoah.
4Some operations are not affected by this. For example, network requests executed within the page’s main world must

abide by the CSP of the page’s origin.
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Fortunately, we can solve this problem by keeping track of a script’s original world. Chromium maintainers

provided the foundations for solving this issue by tracking the origin world via a static stack of worlds (i.e.

a Vector<RefPtr<DOMWrapperWorld>>&)5 [40]. Their patch makes changes to Chrome’s V8 JavaScript

engine and works in the following way:

1. Before executing a script in another world (i.e. the main world or another extension’s isolated

world), we first push the current origin world onto an origin world stack.

2. In order to determine whether code execution is a result of an extension, we check if the current

world is an isolated world. If not, we look at the top world on the origin world stack to determine

if the current world originated from an isolated world. Instead of calling the isIsolatedWorld

method in Listing 25, we instead call the isOfIsolatedWorldOrigin method defined in Listing 26

in Appendix B.

If there are multiple extensions running, it is possible for the origin world stack to contain multiple

different isolated worlds. For example, say extension A inserts an iframe element into the page.

The iframe will have extension A’s isolated world, call it A′, as its origin world (the last world on

the origin world stack). If another extension, say extension B, inserts a script element into this

iframe, the script will have an origin world stack of {A′,B ′} where B ′ is the last element pushed

onto the stack. As B wrote the script executing in the iframe, we would like to blame them for

potentially malicious operations, and therefore we consider B ′ (the last world on the origin world

stack) to be responsible.

3. After executing a script, we pop the origin world off the stack. In order to do this without the poten-

tial error of forgetting to pop an origin world off the stack (step 3), we use a DOMWrapperWorld::-

OriginWorldScope object to push and pop origin worlds from the stack on object construction and

destruction respectively (see Listing 27 in Appendix B).

4.5.3 Script Injection Examples

In this subsection, to substantiate work involved in implementing the origin world stack concept, we give

examples of ways malicious extensions could execute scripts within the main worlds.

script Elements

The script sourced from each script element is executed within the main world (by calling the ScriptLoader::-

executeScriptInMainWorld function). As a result, the most basic way an extension can execute a script

within the main world is to insert a new script element6 with the malicious code (see Listing 10). The

solution is to push the origin world onto the origin world stack in ScriptLoader::doExecuteScript.

This solution also propagates the origin world when a content script creates a new Function object and

applies the function, or when a content script calls the eval function.

5Although this was suggested, this patch was never accepted into the Chromium project as it did not cover all script
injection cases.

6Even though the malicious actions would not be intercepted and trigger a user prompt, we still intercept the operation
of inserting a new script element (§3.7).
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// This content script code is executed in an extension's isolated world

var s = document.createElement('script');

s.textContent =

// This code will be executed in the main world!

"var targetElement = document.getElementById('target-id');" +

"targetElement.click();"

document.body.appendChild(s);

Listing 10: Executing a script in the main world by inserting a script element.

Event Handlers

Even if we keep track of the origin world when inserting script elements into the DOM tree, a malicious

extension can execute code within the main world by registering the code as an event listener as this is

run in a separate world (see Listing 11). Similarly to before, the solution is to push the origin world onto

the origin world stack before handling an event in V8AbstractEventListener::handleEvent.

// This content script code is executed in an extension's isolated world

var s = document.createElement("script");

s.textContent =

// This code will be executed in the main world!

"document.addEventListener(\"DOMContentLoaded\", function() {" +

// This code will be executed in the main world!

"var targetElement = document.getElementById('target-id');" +

"targetElement.click();"

"});";

document.body.appendChild(s);

// Fire a white-listed event to trigger the Event Handler

document.dispatchEvent(new Event("DOMContentLoaded"));

Listing 11: Executing a script in the main world using event handlers.

Timers

The window.setInterval and the window.setTimeout functions create scripts in the main world (see

Listing 12) and execute them periodically or after a given time period respectively. We solve this by

pushing the origin world onto the origin world stack before executing the script in the DOMTimer::fired

method.

// This content script code is executed in an extension's isolated world

var s = document.createElement('script');

s.textContent =

// This code will be executed in the main world!

"window.setTimeout(function() {" +

// This code will be executed in the main world!"

"var targetElement = document.getElementById('target-id');" +

"targetElement.click();"

"}, 1000);";

document.body.appendChild(s);

Listing 12: Executing a script in the main world using timer callbacks.
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MutationObserver Handlers

Scripts can register functions to execute when certain DOM elements are mutated by creating new -

MutationObserver objects. These scripts are executed in the main world (see Listing 13). Unlike script

elements, event handlers or timers, MutationObservers were not covered by the Chromium patch that

attempted to introduce origin world tracking. However, we solved this by pushing the origin world onto

the stack within the V8MutationCallback::call method using the same pattern as before.

// This content script code is executed in an extension's isolated world

var s = document.createElement('script');

s.textContent =

// This code will be executed in the main world!

"var target = document.getElementsByTagName(\"p\")[0];" +

"var observer;" +

"observer = new MutationObserver(function(mutations) {" +

// This code will be executed in the main world!"

"var targetElement = document.getElementById('target-id');" +

"targetElement.click();"

"});" +

"var config = { attributes: true, childList: true, characterData: true };" +

"observer.observe(target, config);" +

// Trigger the MutationObserver

"target.setAttribute(\"data-random-attribute\", true);";

document.body.appendChild(s);

Listing 13: Executing a script in the main world using a MutationObserver.

Promise Handlers

JavaScript Promises are used for asynchronous computation. Similarly to MutationObservers, scripts

can be run in the main world asynchronously using Promises (see Listing 14).

// This content script code is executed in an extension's isolated world

var s = document.createElement('script');

s.textContent =

// This code will be executed in the main world!

"Promise.resolve().then(function() {" +

// This code will be executed in the main world!

"var targetElement = document.getElementById('target-id');" +

"targetElement.click();"

"});";

document.body.appendChild(s);

Listing 14: Executing a script in the main world using a Promise.

4.5.4 General Solution

The main issue with this solution is that we must push the origin world onto the origin world stack

before executing any other injected script (e.g. script tags, timers, event handlers, etc.). If the Chro-

mium browser ever implements another method to run scripts (either synchronously or asynchronous),

developers must remember to push the origin world onto the world stack before executing the script. If

this is not done, extensions can exploit this new method to run malicious code within the main world.

For this reason, the Chromium patch that suggest these changes was ultimately rejected.
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To try and solve this problem, we added the code to push the origin world onto the world stack in

V8ScriptRunner::callFunction which is called whenever a timer, event and mutation observer fires or

whenever a script is injected or promise returns. By doing this, we can remove the origin world related

code from many different Blink and V8 engine classes, greatly reducing the code complexity. Additionally,

the origin world of code executed within the handlers of a JavaScript Promise is correctly set using this

general solution.

Limitations

Unfortunately, this introduces a new problem. Timers fire (and execute the provided callback function)

within the main world even if they are created in a world with an isolated world as its origin world. This

was solved in the Chromium patch by storing the origin world as a private field when first creating the

timer, and pushing it onto the stack when the timer fires instead of pushing the current origin world onto

the stack when the timer fires. As a temporary workaround, we currently push the origin world onto

the stack both in the V8 engine’s V8ScriptRunner::callFunction method and individually for each

JavaScript construct that executes scripts in the main world.

As seen with the Timers dilemma, we cannot truly claim that our project guarantees that extensions

cannot evade detection. Instead, our project provides a framework for how to guarantee this and it

requires the origin world to be pushed onto the origin world stack wherever a script can execute another

script in the main world. We believe that we have handled the majority of cases but we leave this up to

the implementers of Chromium to guarantee.

4.6 Summary

In this chapter, we describe a project requirement that involves determining whether a page script or

extension content script is executing a given method in the Blink engine. Without the ability to do

this, we would be unable to differentiate between extension operations and page script operations and

subsequently we would not be able to intercept suspicious extension actions without also intercepting

page actions7.

We present two solutions that we considered. The first approach consists of comparing the ordering and

frequency of dispatched JavaScript events to determine if a user or script triggered them. Unfortunately,

this would only distinguish between user and script events in general. The second approach is inspired by

the PHP Aspis tool [32] and involves transforming extension content scripts to taint suspicious actions.

This is not possible as we consider extension developers as adversaries. Neither provided the security

guarantees that we aim to achieve and were vulnerable to evasion by sophisticated attackers.

We propose a novel approach to the specified problem that determines if script execution is occurring

within a content script by inspecting the current context’s world. We use this technique to retrieve the

extension in question by using the isolated world’s security origin. Finally, we integrate and extend an

unapproved Chromium patch to guarantee sophisticated attackers cannot evade detection by inserting

new script elements.

7Web-page’s and the scripts they initially load are assumed to be benign (§3.1).
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User Prompts

Existing work has analysed extensions executing within sand-boxes or emulators for suspicious or mali-

cious activity [5, 6, 7]. Most projects researched classify extensions or plug-ins as malicious and either

directly remove them from or notify the Chrome Web Store (CWS). Often these tools would classify

extensions as suspicious and utilise human experts to verify malice.

We present a novel approach, with respect to browser extension security, that involves user interaction.

Our project alerts browser users at suspicious extension activity as it occurs and provides them with the

necessary tools to allow or prevent extension actions.

In this chapter, we first discuss the rationale behind preventing malicious extensions and requiring users to

classify suspicious extension actions as malicious or benign. We explain our choice behind using browser

pop-ups to convey information and present our implementation and design choices. Finally, we describe

work undertaken to better describe and convey extension actions to everyday users so that they can

determine malice themselves.

5.1 Preventing Malicious Extensions

After deciding to analyse extensions at run-time (§3.2), we were presented with the problem of handling

them. In order to guarantee the security of browser extension users, we decided to prevent any suspicious

actions classified as malicious and allow ones classified as benign.

An alternative model we considered involved sending suspicious extension actions to a remote command

center to be analysed by human experts while gracefully allowing the action to execute. However, this

approach is likely not feasible as the quantity of suspicious extension actions that are triggered would

result in an impractical human workload.

Exceptions

Whenever a suspicious extension is prevented, we throw a run-time exception that extensions could handle

so to not completely break functionality. In order to minimise changes to exciting Web APIs, we only

throw exceptions in Blink methods that are currently defined to throw exceptions.

We throw security exceptions, similar to those thrown when network requests are rejected due to Content

Security Policies (CSP), with messages which explain that the user prevented the action. For example,

an exception message could be “Refused to connect to https://evil.com because a user has prevented

it.”, if a user prevented an extension from sending a network request to the mentioned URL.
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5.2 Classifying Suspicious Extension Actions

On deciding to prevent malicious extensions, we were presented with the challenge of classifying suspicious

extensions as malicious or benign. We briefly considered three possible methods.

5.2.1 Delegating Responsibility to Web-pages

The first involved alerting the web-page on which an extension content script is executing, that a sus-

picious operation is occurring. This would delegate the responsibility of determining whether suspicious

operations are malicious or benign to the web-page. The rationale being that web developers would have

the best context on what behaviour is malicious on their web-page. Unfortunately, this solution presented

us with various non-trivial problems.

In order to prevent malicious operations from occurring, we would need to block content script execution

until we decide if the suspicious action is malicious or benign (§5.3). If we delegated the responsibility

of determining malice to web-pages, we would need quick and precise answers so to not break extension

functionality. This may be difficult, as potentially malicious extension background pages have the ability

to intercept1 and read network requests. Additionally, web services may not have the resources to

precisely detect malice in extension operations and subsequently some may be more vulnerable to attack

than others.

Additionally, web-pages may have an incentive to prevent benign extensions (e.g. ad blockers) from

executing on their web-pages. As web-page intentions could be adverse to our project goals, delegating

this responsibility to them may result in broken benign extension.

5.2.2 Statistical Model

We also considered building a statistical model similar to the WebEval tool [5] that we would analyse

suspicious extension operations at run-time. The main limitation is that the analysis must have a very

high precision and recall when analysing operations, which may be disguised by attackers, in order to

not break benign extensions or let malicious ones slip by. If not done correctly, this analysis would fail to

provide adequate security guarantees due to many false negatives and would likely break many existing

benign extensions due to many false positives.

5.2.3 Delegating Responsibility to Users

An alternative solution, which we settled on, involved delegating the responsibility of deciding if an

extension action is malicious or benign to human users at run-time. Users would ideally act in their best

interest, allowing benign extension actions and preventing malicious ones. By requiring user involvement,

we would also be distributing the work load of classifying suspicious operations across millions of browser

extension users. This was inspired by WebEval and Hulk’s use of human experts to verify claims of

extension malice [5, 6].

If it is not possible to guarantee malice or the lack of, users are the most apt to allow or prevent suspicious

operations based on their comfort with risk. Users that are prompted to classify suspicious extensions

1Assuming they have permission to use the chrome.webRequest API [41].
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could also account for the sensitivity of the information or functionality of the web-page the extension

content-script is currently executing within. For example, a user may chose to be more risk-adverse and

prevent an extension attempting to perform a network request on a web-page with sensitive user data (e.g.

medical records) even if they are not certain it is malicious. On the other hand, it would be challenging for

a model or third-party to analyse the sensitivity of information without exposing personally identifiable

or sensitive data.

Limitations

By delegating the responsibility of classifying extensions to users, we in fact relax the security guarantees

that we provide. Instead of protecting users from malicious extensions in a way that cannot be evaded

by sophisticated attackers, we guarantee that we will notify a user whenever an extension attempts to

perform a suspicious operation.

A limitation of this approach is that unlike previous work that used human experts to validate extensions

classified as malicious, we delegate this responsibility to everyday users who are most likely not exper-

ienced with web or browser security concepts. We imagine everyday users would be more risk adverse

and prevent a majority of suspicious actions, thereby breaking many existing benign extensions.

5.3 Return Values

Currently, the majority of Blink methods we consider suspicious return values to users. For example, the

Element.getAttribute method returns the element’s associated value for the attribute name provided.

User dialogs that are displayed when we intercept suspicious extension actions take a long time to be

submitted when compared with the original execution time of the method. As a result, we were faced

with the challenge of effectively returning values to suspicious method callers when the method triggers

a warning dialog. We briefly considered two alternative solutions.

5.3.1 Callback Methods

The first approach involved re-defining all suspicious methods to not return values but instead execute

callback methods provided by callers. If a suspicious method triggers a user dialog, we would wait until

the dialog is submitted and then subsequently execute the callback method. Otherwise, we execute it

immediately. Extension developers could leverage this approach to perform additional computation while

dialogs are displayed. Finally, web-page scripts would continue to execute unaffected while user dialogs

are displayed.

Unfortunately, this approach would require extensive re-factoring of suspicious methods and would ulti-

mately break many existing Chrome extensions. Furthermore, existing web standards would need to be

modified and this would reduce the feasibility of this project. We therefore decided against this solution.

5.3.2 Blocking JavaScript Execution

The second approach which we settled on involves blocking JavaScript execution while warning dialogs

are displayed. Although this incurs a very large performance overhead when suspicious extension actions
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are intercepted, fewer existing extensions would likely break and no modifications would be needed Blink

methods or web standards.

5.4 JavaScript Dialogs

In order to add only minimal changes to the Chrome browser, we explored prompting users to allow or

prevent extension actions using existing dialogs. Currently, scripts can create dialogs using the alert,

prompt and confirm methods. The latter two display dialog boxes and either prompt users for an

input string or prompt them to click an “OK” or “Cancel” button. These existing dialog methods block

execution until users submit or close them, which fulfills our specification.

As we want users to have the choice to either allow or prevent suspicious extension actions, we considered

using the more apt confirm method. By using an existing dialog template, we could avoid defining

and sending additional Inter-Process Communication (IPC) messages from the renderer process to the

browser process.

Furthermore, by using standardised methods to create dialogs, our modifications to the Chrome browser

would more easily be applied to other browsers. After all, other browsers would need to only change their

web-page rendering engines (e.g. Blink and WebKit) and not other components that render browser-

specific views.

5.4.1 Limitations

Without extensive modifications to existing dialog methods, we were presented with two main disadvant-

ages. This influenced our choice to abandon this approach.

Firstly, to prevent users from being spammed by malicious web-pages, Chrome allows users to suppress

alerts and other pop-ups by displaying a “Prevent this page from creating additional dialogs.” checkbox

within dialogs. Although we too do not want to spam or inconvenience users, by using existing methods,

we would not be in control of when to permit users to suppress dialogs. Moreover, we explicitly do not

want suppression of dialogs created by potentially malicious scripts to be coupled with the suppression

of our high-priority warning dialogs. That is, if a user suppresses many dialogs created by other scripts,

we should not suppress suspicious extension action dialogs.

Secondly, with existing dialogs, we have no control over their user interface. Ideally, we would want to

display informative buttons and extension icons so that extensions would be easily identifiable. Addi-

tionally, in order to reduce user confusion, our high-priority warning dialogs should be distinguishable

from dialogs created by malicious web-pages, scripts and extensions.

5.5 Custom Dialog

Instead of using existing JavaScript dialogs, we decided to build our own custom dialog to convey specific

information. Similarly to other Chrome extension pop-ups (see Figure 2.3), we wanted to display the

extension’s icon and name for easy identification, as well as the suspicious action it is attempting to

execute and the page on which it is trying to execute it on. We also borrowed inspiration from Little
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Snitch’s, a host-based firewall application for OS X [42], permission dialogs which prompt users to allow

or deny application network requests (see Figure 5.1) and modified the default dialog buttons from “OK”

and “Cancel” to “Allow” and “Prevent” respectively2.

Figure 5.1: A pop-up dialog Little Snitch displays when Google Chrome attempts to connect to the
duckduckgo.com server.

Although our design met the criteria above (see Figure 5.2), we believe experiments to improve the

interface and wording for everyday, non-technical users are necessary and we leave these for future work.

Furthermore, in order to break the fewest number of extensions as possible, we set the default behaviour

(and button) of our dialogs to allow extension actions. As a result, whenever dialogs are dismissed via the

close button we implicitly allow the extension action. This is different to Little Snitch’s implementation

whereby they prevent network requests by default.

Figure 5.2: The default dialog displayed to users when an extension attempts to execute a suspicious
action.

5.5.1 Implementation

The main challenge when implementing custom dialogs was determining how to structure IPC messages

between the renderer process, that would intercept the suspicious extension action, and the browser

processes, that would render the dialog. A requirement was the renderer process should block until it

receives a response from the browser process.

2We choose to use “Prevent” instead of “Deny” as the cancel button text but being synonyms, these are interchangeable
and we should experiment with both in the future.
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As we had access to the security origin URL from within the renderer process, we have the choice to

either retrieve the extension from within the renderer or browser process (§4.5.13). In order to minimise

the size of IPC messages (see Listing 15), and avoid the performance overhead and serialising Extension

objects or sending large messages, we chose to look-up the extension within the browser process.

We also decided to build the part of the dialog description string that describes the suspicious extension

action (e.g. “send a network request to “https://www.reddit.com/”” in Figure 5.2) within the inter-

cepted action in the render process. The aim was to reduce coupling between Blink methods and our

dialog as much as possible and to let future developers add information to warning messages without

needing to increase the IPC message argument list.

Each message also contains enums representing an extension action group (§3) and the sensitivity of the

element on which an operation is performed on (§6.4). We pickle (serialise) these enums as 16-bit unsigned

integers4 to reduce the size of IPC messages. Each message has an output Boolean field that is set to

true if users allow the action (either implicitly, if the browser remembers their decision, or explicitly if

they click the “Allow” or “Close” buttons) and false otherwise.

// A request to display a prompt dialog, asking for permission to perform

// extension action

IPC_SYNC_MESSAGE_ROUTED5_1(FrameHostMsg_DisplayExtensionActionPrompt,

GURL /* in - extension url */ ,

base::string16 /* in - prompt message */ ,

SuspiciousExtensionAction /* in - extension action */ ,

SensitiveElement /* in - sensitive_element */ ,

GURL /* in - originating page URL */ ,

bool /* out - success */ )

Listing 15: The IPC message sent from the renderer to browser process requesting that suspicious
extension action dialog is displayed.

We follow a similar architecture and implementation to JavaScript dialogs and block script execution in

the renderer process by delaying the reply from the browser process until users submit the associated

dialog. This is implemented by using the IPC MESSAGE HANDLER DELAY REPLY macro. We also prevent

other tabs in the same renderer process from processing user input events by executing GetProcess()-

->SetIgnoreInputEvents before and after we display the dialog.

Whenever we intercept a suspicious operation and determine that the operation is being executed by an

extension, we call Document::userAllowsSuspiciousExtensionAction which sends the IPC message

to the browser process (see Listing 28 in Appendix C). Whenever a user closes the dialog, we set the IPC

message success variable to true or false and send a response.

5.6 Highlighting Elements

A fundamental part of this project relies on an everyday user’s ability to correctly classify suspicious

extension actions as benign or malicious. If they incorrectly classify malicious extension operations as

benign, they may be vulnerable to attacks. On the other hand, if they incorrectly classify benign actions

as malicious, they may break the functionality of many existing extensions. As a result, an indirect goal

3The ExtensionRegistry used to retrieve extensions can only be accessed within the browser process but has a counter-
part, aptly named RendererExtensionRegistry, that can be accessed within the renderer process.

4This is the smallest possible type we could serialise. A possible extension would be to serialise both parameters together
within this integer.
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of this project was to convey as much useful information about extension actions as possible so that users

can make informed decisions.

The first feature we considered adding in order to provide more information about extension actions

involved “highlighting” the element on which an extension operation executes (if an element exists at

all). Chrome’s DevTools [43] currently provides similar functionality whenever developers hover over

elements within the developer tools tab (see Figure 5.3). This idea is also similar to how BrowserFlow [34]

highlights (changes the background colour of) text segments to alert users of accidental data disclosure.

Figure 5.3: An example of a page element highlighted due to Chrome’s DevTools [43].

We proposed a simple design in which an element is highlighted just as an suspicious action dialog is

display and un-highlighted when the dialog is closed.

5.6.1 Implementation

To highlight an element, we simply inserted another element the same size, with a transparent yellow

background color, and positioned it on top of the original element.

However, the main challenge when implementing this feature was updating the page within the Blink

method executed by an extension. As mentioned in Section 2.1.3, the main thread must block while page

changes are committed to the compositor thread and drawn to the screen. To prevent blocking the main

thread often, updates are not committed to the compositor thread during Blink method calls (e.g. when

calling the ContainerNode.appendChild method). Instead, Blink methods that mutate the page mark it

as “dirty” by calling the SetNeedsCommit method. This notifies the compositor scheduler (CCScheduler)

that the layer trees between the main thread and compositor thread are no longer consistent and that it

should request a new commit5 [17].

If we simply added a highlight element, blocked while the warning dialog was displayed and then re-

moved the highlight element, the user would never see it as the page changes would only be flushed

to the compositor thread after the method returned. A solution would be to synchronously pump all

of the changes to the compositor thread after adding a highlight element and after removing it6 but

unfortunately Chromium provides no easy mechanism to do this.

We discovered the Document::RequestAnimationFrame method which appears to commit changes to the

compositor thread and then executes a callback method provided as an argument. A unique solution

would be to split every suspicious Blink method in two separate methods. The first method would insert

5In fact, the CCScheduler considers the overall system state and may delay a commit due to a variety of reasons including
the last screen draw and the time of the next frame.

6This second pump is technically not necessary as we could just wait for the CCScheduler to request a commit after the
Blink method returns
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a highlight element into the DOM, if the original method is executed by an extension, and subsequently

call Document::RequestAnimationFrame with the second method provided as the callback argument.

We experimented with modifying the EventDispatcher::dispatch method as described above but faced

many non-trivial run-time errors. We ignored the EventDispatcher::dispatch method’s return value

as we had yet to figure out how to return the correct value via the Document::RequestAnimationFrame

callback method. This may explain the errors encountered but further investigation is needed.

We managed to modify the Element.setAttribute method without run-time errors but unfortunately

the page changes were not being pumped to the compositor thread before the callback passed to Document::-

RequestAnimationFrame executed. This resulted in the element under question being highlighted only

after the warning dialog was dismissed. We also experimented with executing Element::SetNeeds-

CompositingUpdate and similar methods after inserting the highlight element without success. This

might suggests error in our understanding or use of this method and at the time of writing, we have not

yet correctly implemented this feature.

5.6.2 Limitations

Although unsuccessful, our proposed approach of waiting for the compositor thread to update the screen

with a highlight element before displaying the warning dialog could greatly increase the performance

overhead for suspicious operations. Furthermore, as we “remember user decisions” within the browser

process (§6.3), we may display a highlight element and incur the overhead unnecessarily if extension

action is implicitly allowed or prevented and the warning dialog not displayed.

Moreover, elements can be positioned off the page and can be extremely small so that they are not visible

to users. For example, tracking pixels are usually one pixel in width and height, and are designed to be

invisible to users [44]. In these cases, highlighting the elements would provide little benefit but still incur

performance hits. Potential solutions might include scrolling to the elements off the page and alerting

users that the element is “hidden”.

5.7 Describing Elements

As well as highlighting elements visually so that users can find them on the web-page, we wanted to give

web-site providers the ability to describe elements themselves. We implemented this by using a custom

data-description attribute which web-pages and extensions can change, but which only web-pages can

remove (see Subsection 3.8.2).

When describing an extension action in a warning dialog, we describe the element on which the action was

performed as “an element” if there is no description. If the web-site provider has specified an alternative

description via the data-description attribute, we use this instead.

The main limitation of this approach is that we must rely on web-pages to provide informative and

correct descriptions for all elements that may be involve in a suspicious operation. Furthermore, these

descriptions may need to be updated when elements are mutated by the page and would need to be

localised for the user’s browsers.
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5.8 Additional Information

During testing, we noticed that our warning dialogs do not give enough information about suspicious

extension actions for users - even those experienced with browser security - to classify them as malicious

or benign. We experimented with adding additional information (e.g. the old and new values of the

element attribute being changed) to the warning dialog but this resulted in our the dialogs becoming too

complex for everyday users.

We begun implementing a feature, similar to Little Snitch’s (see Figure 5.4) and Chrome’s “install exten-

sion” dialog view, to display additional information for each suspicious action in a separate expandable

view. Due to time constraints, this feature has not been completed but we believe it would adequately

solve the complexity issue described above.

Figure 5.4: A pop-up dialog Little Snitch displays when Google Chrome attempts to connect to the
duckduckgo.com server with additional information displayed. Personally identifiable information has
been hidden.

5.9 Summary

In this chapter, we choose to prevent suspicious extension actions classified as malicious and allow ones

classified as benign. We consider using statistical models to classify suspicious actions and delegating the

responsibility of classification to web-pages, but decide against both due to weak security guarantees and

potentially adverse intentions respectively.

We compare two methods of dealing with return values that involve re-defining Blink methods to take

callback methods or simply blocking JavaScript execution while classifying suspicious operations. The

latter is choosen due to simplicity and minimal impact on Web API standards.

The advantages and disadvantages of using existing JavaScript dialogs are evaluated and we decide to

instead build our own custom warning dialog. This allows us to display the extension’s icon and make

buttons more informative but requires new IPC messages between the renderer and browser processes to

be defined and handled.
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Finally, we propose multiple features, including highlight elements, description attributes and additional

information views. These aim to provide users with useful information which they can consider when

classifying extension actions.
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Reducing Dialogs

Our modified browser alerts users of suspicious operations that an extension attempts to perform and

shifts the responsibility of classifying these actions as malicious or benign to the user. This responsibility,

similar to security in general, is inherently inconvenient for everyday users. We believe that even security-

conscious users will resort to allowing or preventing all suspicious extension actions if they are frequently

interrupted with warning dialogs.

As a result, an indirect goal of this project was to filter out obviously benign suspicious operations and

provide mechanism by which users can reduce the quantity of dialogs they are presented with. In this

chapter, we present techniques employed to achieve this goal by ignoring benign events, filtering out

operations on elements not attached to the DOM tree, remembering user’s decision to allow or prevent

actions and by introducing the concept of sensitive DOM elements.

6.1 Suppressing Common Benign Events

While manually testing our modified browser, we noticed extensions were triggering many seemingly

benign events. More specifically, every extension we analysed implicitly triggered1 readystatechange,

DOMActivate, DOMContentLoaded and load events when they were injected and loaded within a web-

page’s context. Although these events were routinely dispatched, they did not appear to pose a threat

to users and provided little information about their purpose, which would likely confuse everyday users.

Therefore, we decided to white-list these events and allow them to be dispatched by a content script

without user permission.

Our current implementation of this white-list is naive and utilises a set of white-listed event-type strings

which we allocate on the stack for each dispatched event. A better solution would involve comparing the

event in question against a static constant bitfield to reduce the performance and memory overhead.

6.2 Allowing Operations On Unattached Elements

While analysing existing extensions, we also discovered that most extensions create an element and

append to it other child elements before inserting it into the page’s DOM tree. This prevents the element

being rendered on the page before it is finished being constructed (i.e. before its children are inserted).

Our modified browser regularly notified us that an extension was attempting to append a child to an

element despite that element not being connected to the page’s DOM tree. As we have no evidence

demonstrating attacks being carried out by mutating or reading elements that are not attached to the

1The Chrome browser triggers these events without content script input.
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DOM, we chose to always allow them. This was implemented using a simple Element.isConnected

conditional check before intercepting operations.

The only exception to this condition is the Document.createElement method, which we don’t intercept

by default (§3.7), and which never produces an element that is connected to the DOM tree. In this case,

if a user configures our modified browser to intercept operations that create elements (§3.10), we intercept

them despite the created elements not being attached to the page.

6.3 Remembering User Choice

In order to not prompt users with redundant warning dialogs, we followed the practice2 of allowing users

to request that the browser remember their decision via checkboxes. If a user opts into always allowing or

preventing a certain action, we no longer display warning pop-ups for that action and instead implicitly

allow or prevent it respectively. By reducing the number of duplicate warning messages that users are

presented with, extension functionality become more consistent and users can focus on unique warning

messages.

Our dialogs also give users the option to always allow actions performed on non-sensitive elements (§6.4).

6.3.1 Similar Suspicious Actions

This feature’s main design decision was how we determine if suspicious actions have been pre-approved

or pre-prevented by users. Specifically, the challenge was deciding how to compare suspicious extension

actions.

The first solution we explored was to compare the suspicious action extension group. These would

include DOM operations, network requests and more (see Listing 21). For example, if a user decides to

always allow a network request between a content script and www.reddit.com, we would also allow the

extension to send network requests to www.evil.com in the future without user permission. This choice

is obviously too broad as the destination of each network request (in the previous example) is different,

yet the operations are considered the same. As users are very likely to factor in the network request’s

destination address when deciding to allow or prevent it, this solution was deemed unacceptable.

Another solution would be to only regard suspicious operations as equal, with regards to this feature, if

the state of the DOM tree and operations are identical. For example, if a user decides to always allow

a network request between a content script and www.evil.com, but then adds sensitive information to

the page, we would display a dialog the next time the extension attempts to send the same network

request. This choice is obviously too fine-grained as everyday users lack the ability to inspect the details

of the page or operation for differences. Since pages are frequently mutated, users would almost always

be prompted with dialogs despite choosing to “Always allow” or “Always prevent” actions and this would

defeat the purpose of this feature.

Another issue with the previous two approaches is that users are not aware of how extension actions are

compared. To solve this, we chose to regard two extension actions as equal, with regards to remembering

extension actions, if their associated dialogs would display the same warning text.

2In particular, the Little Snitch application also provides this functionality (see Figure 5.1).
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6.3.2 Implementation

We implement this feature using an in-memory map from user dialog text to a user’s preference to either al-

ways allow, always prevent or always display dialogs for certain actions (i.e. std::map<base::string16,

RememberPreference>). This was done, as opposed to using an extension state store (§3.10), so that a

user’s remembered actions are reset every time they re-launch the Chrome browser. We chose to do this

as users currently have no way to modify previously made decisions.

Since content scripts can be loaded within the same web-page within multiple tabs or windows which

can each execute within a different renderer process, our map resides in the browser process. The main

limitation with this approach is that the renderer process must still send Inter-Process Communication

(IPC) messages to, and block until it receives a response from, the browser process. This occurs even if

the action will be implicitly allowed or prevented. An unfortunate consequence of this decision is that

every suspicious extension action must communicate across process boundaries and this adds considerable

performance overhead.

Checkbox Finite State Machine

In order to make our user interface easier to use for everyday users, we spent time tweaking it and imposed

certain restrictions on it. The finite state machine in Figure 6.2 represents these restrictions.

If the “Always allow” or “Always allow for non-sensitive elements” checkboxes are selected, the “Prevent”

button is disabled (see Figure 6.1). Likewise, if the “Always prevent” checkbox is selected, the “Allow”

button is disabled.

Figure 6.1: Whenever the “Always allow” or “Always allow for non-sensitive elements” checkboxes are
selected, the “Always prevent” checkbox and “Prevent” button are disabled.

Furthermore, if a user selects the “Always allow” checkbox, the “Always allow for non-sensitive elements”

checkbox is checked and disabled (see Figure 6.1). We chose to do this because always allowing a suspicious

operation would allow it whether it is performed on a sensitive or non-sensitive element. Deselecting the

“Always allow” checkbox re-enables the “Always allow for non-sensitive elements” checkbox and returns

it to its previous state. We also disable and uncheck the “Always prevent” checkbox when either of the

other two are checked and likewise, we disable and uncheck the other two checkboxes when the “Always

prevent” checkbox is checked.

Finally, if an extension action has been allowed for non-sensitive elements but the current dialog is

displaying the action for a sensitive element, the “Always allow for non-sensitive elements” checkbox is

checked by default.
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Figure 6.2: Checkboxes in our dialog are disabled and enabled by clicking on other checkboxes. This
finite state machine represents that valid transitions. The p, a and ans transitions represent toggling the
“Always prevent”, “Always allow” and “Always allow for non-sensitive elements” checkboxes respectively.
If a transition does not exist from a state, it means the associated checkbox which you would toggle is
disabled.

6.3.3 Limitations

The main disadvantage with this feature is that a user’s preference to always allow or prevent certain

suspicious extension actions only lasts until the browser is closed. This occurs because our modifications

persist this information in-memory and do not write it to disk. Ultimately, this inconveniences and

potentially confuses users as they required to give permission to extensions actions every time they

restart their browser.

6.4 Sensitive DOM Elements

To discourage users from dismissing important notifications, we must be careful not to flood them with

alerts of benign actions. For operations that take DOM elements into account (e.g. events and DOM

mutation), one option we considered was to only alert users if the element was deemed sensitive.

Unlike the Hulk tool [6], we decided against building a separate tool that classifies the sensitivity of

elements for the following reasons:

• Elements might be mutated or created during web-page and extension content script execution.

In order to keep the sensitive items on a page up to date, we would need to re-determine the

sensitivity of each potentially modified element every time a mutation occurs. This would likely

incur significant run-time overhead.

• In order to guarantee that an extension is not operating on sensitive elements, we would have to
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correctly classify all sensitive elements as sensitive. If this results in incorrectly classifying many

elements as sensitive (i.e. has a low precision and high false positive rate), users will soon ignore

any mention of sensitivity as many seemingly unimportant elements would be considered sensitive.

Building a tool with high recall and precision would be a difficult challenge in its own right and we

leave this for future work.

Instead, we chose to give service providers, who have the most context and knowledge about data and

functionality on the web-pages they provide, the ability to mark elements on their web-pages as sensitive.

Furthermore, we consider any tainted element or any of its descendants as sensitive.

6.4.1 Changing Sensitivity

Unlike BrowserFlow’s Text Disclosure Model [34] that allows users to change privilege labels [34], we

also decided against allowing extensions or users to change the sensitivity of elements. If a malicious

extension were to mark an element as not sensitive, this may result in fewer dialog pop-ups being shown

to users. An attacker could use this to evade interception. On the other hand, if a malicious extension

were to mark many elements as sensitive, more dialogs would be displayed with a sensitive element or

data warning, which would dilute their importance.

6.4.2 Usage

As we cannot realistically ask service providers to begin tainting all sensitive elements on the web-pages

they provide, we currently warn users about suspicious operations performed on any element, sensitive

or not. We also chose to display additional information on eligible pop-up dialogs that informs users of

the sensitivity of an element.

Additionally, when users are prompted to allow or prevent operations on non-sensitive elements, we let

them always allow the operation for non-sensitive elements (see Section 6.3 and Figure 6.3). We do

not give our modified browser the ability to always allow suspicious operations on sensitive elements as

sensitive elements are more prone to misuse by definition and this therefore makes little sense.

On the other hand, it might make sense for users to be given the ability to prevent all operations on

sensitive elements but not operations on non-sensitive elements (i.e. an “Always prevent for sensitive

elements); we leave investigating this further for future work. We chose not to add this extra checkbox

to prevent the dialog from becoming too cluttered and therefore more confusing for the everyday user.

6.4.3 Tracking Sensitive Data

Similarly to how we consider certain elements as sensitive and present this information to users, we also

consider certain data originating from sensitive elements as sensitive. As sensitive data can leak out of

the web-page via network requests3 and since users may base their decision to allow or prevent requests

on this information, we wanted to inform them on the sensitivity of information leaving their browser.

One option was to taint any data associated with sensitive elements in Chrome’s V8 JavaScript engine

and propagate it through the system similar to the work of Egele et al. [7]. Although this solution

3Sensitive data can also leave the web-page via chrome API methods, (e.g. chrome.runtime.sendMessage) but these are
not currently intercepted and we therefore ignore these cases.
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Figure 6.3: A suspicious action alert dialog that includes information about the sensitivity of the
element and lets users request that the browser remembers their decision for non-sensitive elements.

would correctly propagate sensitive information through the system, it would likely result in a significant

memory and performance overhead. Furthermore, we expect the implementation of this feature to take

considerable time and since tracking sensitive data is not a high-level goal of this project, we opted for a

simpler solution.

We took inspiration from the BrowserFlow plug-in [34] and decided to compare the data an extension

is uploading in a network request with sensitive data on the page that has previously been read by any

script. However, unlike BrowserFlow, our current comparison is precise in that we look for exact matches

of sensitive data in network requests. We decided against imprecise data flow tracking as, according to

research by Papagiannis et al., it does not work well comparing the similarity of small text segments,

resulting in many false positives [34]. Most sensitive data (e.g. secret tokens, identifiers, passwords) will

be smaller in length than an average paragraph and BrowserFlow text segment.

We considered only comparing the network request data with sensitive data that has been read by the

extension sending the request, but this would expose a vulnerability. Other scripts or extensions could

strip the sensitivity of data by leaking it from a sensitive to non-sensitive element. A malicious extension

could read the non-sensitive data from the non-sensitive element and successfully send it in a network

request without having Chrome alert the user of sensitive data leakage.

Limitations

This approach suffers from two large limitations that make it impractical in practice. Firstly, Browser-

Flow’s imprecise data flow tracking only worked because their threat model constitutes of trusted-but-

careless users. In our threat model, we assume extensions to be malicious. A sophisticated attacker with

knowledge of the data flow tracking model can encrypt sensitive data before uploading it via a network

request, thereby evading our trivial sensitive detection. Secondly, our approach does detect sensitive data

that has been slightly modified.

Furthermore, similar to the description attribute (§3.8.2), we only know an element’s sensitivity if the

web-site explicitly sets this attribute. For many small online companies, marking every sensitive element

may not be feasible. Additionally, we also place responsibility on service providers to correctly mark

elements as sensitive. Service providers that mark too few elements as sensitive may let malicious actions
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go unnoticed, and service providers that mark too many elements as sensitive may risk flooding the user

with benign action alerts. The latter would increase the false positive rate and reduce the likelihood the

user spots a malicious behaviour.

Another disadvantage of our implementation is that we currently only use a binary model of sensitivity

(i.e. elements are sensitive or not). However, this does not take into account the fact that elements are

generally sensitive to only certain extension operations. For example, a “like” button may be sensitive to

click events and reads of its form’s action URL and secret tokens4 but not be sensitive to style changes.

Our approach does not take into account extension operations when determining the sensitivity of an

element or its data.

6.4.4 Implementation

Similarly to element descriptions, we decided to use a custom, this time Boolean, attribute data-sensitive

to mark sensitivity. We implemented a simple Element.isSensitive method that checks the current

element’s sensitivity or recursively checks its ancestors (see Listing 16). This implementation has a nice

feature whereby service providers can mark non-sensitive elements within (i.e. as descendants of) sensitive

elements by setting the sensitivity attribute to false (i.e. data-sensitive="false"). We also exposed

the Element.isSensitive method to all scripts by adding it to the Elements interface (Web IDL).

// Returns true if the element is sensitive and false otherwise

bool Element::isSensitive() const {

if (hasAttribute("data-sensitive")) {

return true;

}

Element* parent = parentElement();

if (parent != nullptr) {

return parent->isSensitive();

}

return false;

}

Listing 16: The Element.isSensitive method returns true if the element in question is sensitive.

We used a static HashSet to keep track of sensitive data that has been read in the current renderer

process. Whenever data is read from a sensitive element using the Element.getAttribute method, we

add it to the set. In order to provide security guarantees about sensitive data read, we also wanted to

mark element attributes as read whenever a script reads an element’s raw HTML. If a script calls the

Element innerHTML or outerHTML methods on a sensitive element, we mark all of the element’s attributes

as read and recursively do the same for all child elements that remain sensitive in a depth-first fashion

using the ContainerNode.markSensitiveDataAsRead method (see Listing 29 in Appendix D).

The sensitivity of each suspicious action is sent, represented as an ExtensionActionIsSensitive enum

(see Listing 17), from the renderer process to the browser process whenever we want to display suspicious

extension action dialogs via an IPC message (§5.5).

Changing Sensitivity Warnings

We prevent any attempt by extensions to add or remove the sensitivity taint to or from elements. We

currently do not inform the users of extensions attempting to do this but we propose this as a future

4Websites often attach secret tokens to forms to prevent Cross-Site Request Forgery (CSRF) attacks [38].
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enum class ExtensionActionIsSensitive {

TRUE, // action performed on sensitive element

FALSE, // action performed on non-sensitive element

NA // action not performed on element (e.g. network request)

};

Listing 17: The SensitiveElement enum captures the possible sensitivities of an element.

extension. After all, extensions that attempt to mutate sensitivity are highly likely to be malicious

and informed users may choose to uninstall them even if they are prevented from changing an element

sensitivity.

6.5 Summary

In this chapter, we illustrate the challenge of reducing the number of dialogs with which users are

presented. This problem, unsolved, would inconvenience users and consequently weaken their security as

they would be less likely to correctly classify suspicious actions.

Furthermore, we outline many features implemented to alleviate the problem. The first two include

implicitly allowing common benign events and allowing operations that are performed on elements not

yet attached to the DOM tree. Neither appear to present prevalent threats.

We provide users with a tool to always allow or prevent certain suspicious extension actions with the aim

of reducing the number of duplicate warning dialogs. We explore various solutions but choose to compare

extensions based on their associated dialog warning messages.

Finally, a unique model of sensitivity is presented with which web-pages can mark elements as being

more vulnerable to malicious extensions. Users are notified when suspicious operations act on or utilise

suspicious extensions and their data. For the sake of simplicity, we adopt a precise data flow tracking

model inspired by previous research.
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Evaluation

In this chapter, we evaluate our modified Chrome browser against project objectives (§1.1). We describe

the security guarantees we provide and evaluate our success in protecting users from malicious extensions

by building one and analysing existing suspicious extensions available on the Chrome Web Store (CWS).

A user survey is carried out to quantitatively determine the success of our user interface and popular

existing benign extensions are analysed to understand how often suspicious operations are executed.

Finally, Chrome benchmarks are compared to detect the performance overhead of our changes and we

consider the feasibility of integrating our changes with the Chromium project.

7.1 Contrived Malicious Facebook Extension

To continuously evaluate the project during development against a malicious extension, we built a con-

trived malicious Facebook extension which we suitably named Malicious Facebook Extension. Users

can ask the extension to perform operations, originating from the extension’s content script, that would

be considered malicious had they occurred without the users knowledge and consent. Furthermore, users

can request that the extension executes operations within the main world by injecting scripts and using

other JavaScript constructs like Promises or MutationObservers. We used this extension to ensure that

our modified browser correctly intercepted all suspicious operations, even when executed within different

worlds.

We took inspiration from Chipman et al. [4], and published1 our extension as an educational one on the

CWS [45] that would alert users of the capabilities of malicious extensions. The extension has also been

open-sourced on GitHub [46] under a MIT License.

7.1.1 Implementation

We give an overview of the design of the contrived malicious Facebook extension. It is composed of two

modules: a pop-up (background) page where users request operations be carried out and a content script

injected onto Facebook pages that performs the suspicious actions.

Architecture

The architecture for the contrived malicious extension is extremely simple. A pop-up page that is dis-

played when users click on the extension icon to the left of the URL bar simply iterates through every open

tab and sends a message to it using the chrome.tabs.sendMessage Chrome extension API method. The

1The extension has been privately published and is currently only accessible via the link provided.
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Figure 7.1: The pop-up page that is displayed when users click on the Malicious Facebook Extension
button.

pop-up page and the permission to use the tabs API must be defined in the extensions manifest.json

file (see Listing 18).

Each Facebook web-page has the malicious extension’s content script injected into it and the content

scripts register incoming messages handlers using the chrome.runtime.onMessage.addListener Chrome

extension API method.

Triggering Suspicious Actions

Messages are sent whenever users click on “Action” buttons on the pop-up page (see Figure 7.1). These

are several key operations we deem suspicious (§3) and includes clicking on the first “like” button on

a page, inserting a fake post onto Facebook’s “timeline” and sending a network request to an external

domain2. We also include actions to toggle an element’s sensitivity attribute and change its description

attribute. For the purpose of this contrived evaluation extension, the extension does not currently perform

operations that are not intercepted by default (e.g. reading a network request’s response) (§3.10).

2Due to Chrome’s extension permission model, we must include this domain, https://www.reddit.com, in the extension’s
manifest.json file. See Listing 18.
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{

"browser_action": {

"default_pop-up": "pop-up.html"

},

"permissions": [

"activeTab",

"https://www.reddit.com/"

],

"content_scripts": [

{

"matches": ["https://www.facebook.com/*"],

"js": ["content_script.js"]

}

]

}

Listing 18: A simplified manifest.json file for our contrived malicious extension with all the permis-
sions needed to trigger suspicious actions.

Injected Scripts

Users can request that extensions perform actions within the main world by requesting the content

script inject a script element according to the channel specified (see Figure 7.2). We provide this

functionality to ensure malicious extensions cannot evade detection and interception by injecting scripts.

At the moment, we support every method of injecting scripts that we are familiar with including script

elements, event handlers, timers, MutationObservers and Promises (§4.5.3).

Each message is a string encoding of the selected action and channel. Whenever we receive a message,

we call the function defined to carry out a specific action. If the channel requested is an injected script,

we create and append a new script element with the string representation of the action function as its

textContent (see Listing 30 in Appendix E).

7.1.2 Results

Our modified Chrome browser successfully intercepted (and blocks, in the case of the “Toggle sensitivity”

operation) every suspicious operation that our extension fires. It does this whether or not the operation

is executed within the Facebook page’s main world or within the content script’s isolated world. Further-

more, if we configure the browser to intercept attribute read operations, we also successfully intercept

the extension attempting to find elements on the Facebook page such as the first “like” button or the

“timeline” container.

7.2 Chrome Web Store Extension Analysis

In order to evaluate the effectiveness of the modified Chromium browser, we decided to manually run

suspicious Chrome extensions that are publicly available on Google’s CWS to see if the intercepted

operations exhibit suspicious behaviour. Our goal was to find and flag extensions that perform malicious

functionality or functionality that the user is unaware of.

As the CWS hosts thousands of extensions [47], with the majority benign, we focused on extensions that

provide additional functionality to Facebook. Our reasoning was that these extensions are more likely to
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Figure 7.2: Users can request that the operation be executed within the Facebook web-page’s main
world by selecting different channels.

be malicious as malicious extensions that perform Facebook hijacking attacks often disguise themselves

as legitimate Facebook extensions (§2.3).

7.2.1 Methodology

Finding Suspicious Extensions

To find publicly available suspicious extensions, we searched the Chrome Web Store for extensions that

add functionality to Facebook using the search terms “facebook”, “facebook theme” and “social”. We

favoured extensions published by individuals (as opposed to reputable websites or companies), with low

ratings or with functionality that seemed unfeasible to add to Facebook.

For analysis, we installed one extension at a time and configured the browser to intercept all possible

extension actions (§3.10). By doing this, the browser would provide more information about what the

extension is doing at run-time and hopefully increase our chance of finding malicious behaviour. Addi-

tionally, this would also evaluate our choice of extension operations that we intercept by default.
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Facebook Account

Before installing and analysing suspicious extensions, we created a new Facebook account for testing so to

protect other non-testing accounts from being compromised via Facebook hijacking attacks. By creating

a test account, we aimed to make our analysis more reproducible.

Malicious extensions normally react to specific elements on Facebook pages. For example, they may

click the “like” button of posts from a particular publisher or user. In order to maximise the probability

of triggering malicious functionality, we seeded the test account with Facebook data similar to that of

typical users. This involved adding several users as “friends”, “liking” the Facebook pages of various

organisations and sharing posts on the test account’s “timeline”.

In order to follow Facebook’s terms of service, the test accounts were registered with our real names and

information. Unfortunately, this resulted in Facebook promptly blocking the test account. As a result,

we instead reverted to using personal Facebook accounts.

Analysis

As our analysis requires running extensions to trigger malicious behaviour, we followed a similar testing

script for each test. For each extension under analysis, we performed everyday, common actions on

Facebook pages with the extension enabled for approximately 15 minutes.

The first step we took was to use the extension’s stated functionality. For example, we experimented with

changing the Facebook colour theme for theme-related extensions or moused-over images for extensions

who increase the size of photos on Facebook pages. We did this for two main reasons. Firstly, we could

compare pop-up dialogs displayed when performing core extension functionality to those displayed when

surfing Facebook normally to detect abnormal behaviour. Secondly, we could determine if extensions

were performing operations unbeknownst to users that potentially damaged their security or privacy in

order to provide core functionality.

After testing the core functionality of the extension, we surfed various Facebook pages and performed

the everyday actions below.

1. Scroll down the main Facebook “timeline”.

2. Visit our Facebook account’s profile page.

3. “like” various arbitrary Facebook posts.

4. Search for and visit the Facebook pages of various popular organisations and users. We specifically

searched for “The Guardian”, “Fox News”, “Theresa May” and “Donald Trump”.

5. Write an arbitrary Facebook post and share it3.

6. Send an arbitrary private Facebook message to another user.

7. Click an arbitrary external link on a Facebook post shared by another user.

8. Log out of and back into our Facebook account.

3Posts were shared with the “Only Me” privacy setting to prevent other users from viewing them
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Unlike our evaluation of benign, popular extensions (§7.4), we did not record every single action inter-

cepted. Retroactively determining malice by inspecting intercepted action logs could prove incredibly

difficult, and one goal of the modified browser and this project is to allow users to prevent suspicious

extension operations at run-time. Consequently, we instead inspected each pop-up dialog manually and

if malice was suspected, we investigated the operation further. We extensively used Chrome’s inspector

toolkit to view the extension’s source code, JavaScript process’ console and any network requests the

extension sent or received.

7.2.2 Results

During our evaluation, we analysed 12 separate extensions publicly available on the CWS.

According to our modified Chrome browser, 9 extensions manipulated the DOM tree by creating, inserting

or removing one or more elements on the page. We also found that 11 extensions read and 5 mutated

element attributes. The most common attributes interacted with were: type (witnessed in 8 extensions),

href (5), disabled (5), value (5) and className (4). The browser also alerted us of an extension

reading the src attribute and of another interacting with custom attributes.

Two extensions caused the modified Chrome browser to crash with segmentation faults. Due to the multi-

process architecture of the Chrome browser, we can deduce that the faults were caused in the browser

process and likely caused by bugs in the pop-up views.

Only 2 extensions were caught sending network requests and reading their responses, and 3 were caught

triggering events respectively; these turned out to be the most interesting operations intercepted. As

users of the modified browser, pop-up alerts of these operations appeared most suspicious and we discuss

the 3 extensions that executed them in the following case studies.

Case Study: Manipulating Facebook “likes”

We found two benign but suspicious extensions that allow users to automate Facebook actions. Simil-

arly to the contrived malicious extension we built (§7.1), users can request that the extensions perform

operations that would be considered Facebook hijacking attacks if carried out without consent.

The first extension, ToolKit For Facebook [48], describes itself as a “collection of Facebook automation

tools that are created to save [users] time while using Facebook.”. The extension is offered by http:

//getmyscript.com and, as of 26th of May 2017, has 258,406 users and a 4 star rating (based on 1830

user reviews) on the CWS, as well as 2.5k Google Plus recommendations.

Although the extension provided many tools, we tested only one, due to time constraints. The tool

claims to remove all the current Facebook user’s page “likes”. We choose to test this functionality as

“like” manipulation is a prevalent Facebook hijacking threat4. The modified Chrome browser successfully

intercepted and alerted us of network requests to a Facebook URL and network response reads that the

extension was performing in order to un-“like” pages (see Figure 7.3).

The second extension, Like all, plus all, favorite all [49], lets users “like” all Facebook, Google Plus

or Twitter posts. As of 26th of May 2017, the extension, offered by Duc Nguyen, has 10,894 users and a

5 star rating (based on 473 user reviews) on the CWS, as well as 411 Google Plus recommendations.

4Although malicious extensions tend to “like” Facebook posts and pages, instead of un-“liking” them.
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Figure 7.3: One of the many network requests the Toolkit For Facebook extension sent to https:

//www.facebook.com in order to un-“like” all of a user’s “liked” pages.

Figure 7.4: The Like all, plus all, favorite all extension fires events (intercepted by our modified
browser) that click all of the “like” buttons on a Facebook time.

Similarly to the first, this extension manipulates “likes” on a Facebook page. However, unlike the first,

it does so by firing click events on “like” button elements, instead of sending network requests. Despite

this, our modified browser still successfully intercepts every event triggered by the extension (see Figure

7.4).

In our opinion, these case studies adequately demonstrate that our modified browser would successfully

intercept Facebook hijacking attacks that attempt to manipulate “likes”, whether by firing events or send

network requests.

Case Study: Social Profile view notification

We discovered one extension, Social Profile view notification [50], that claims to “[send users] a

notification when somebody views [their] social profile”. The extension is offered by http://fbpv.info

and, as of 24th of May 2017, has 156,791 users and a 3.5 star rating (based 3168 user reviews) on the

CWS, as well as 1.9k Google Plus recommendations. In order to notify Facebook users when somebody

visits their Facebook page, the extension would need to know what page each Facebook user is currently

on. This functionality is not currently provided by a Facebook API.
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Figure 7.5: A browser pop-up dialog prompting the user to allow or prevent the Social Profile view
notification extension from sending a network request to its background page.

Similar to other extensions tested, this extension created a new element and read various element attrib-

utes (including the lang and value attributes). Interestingly, the browser also alerted us (at regular in-

tervals) that the extension was sending two network requests to its background pages /tmp/pop-up.html

and /tmp/user.html (see Figure 7.5). By inspecting the network usage of the extension’s background

page, we noticed that it was essentially acting as a proxy and forwarding the requests to an (unresponsive)

external server.

The first network request asks for a set of users currently viewing the extension user’s Facebook profile.

The second network request (see Listing 19) provides the external server with the identifiers of the

Facebook profiles that the extension user has recently visited, as well as the extension user’s Facebook

profile identifier and full-name.

POST /v/add/ HTTP/1.1

Host: app.facebookprofileview.com

Origin: chrome-extension://pegkceflonohbcefcbflfpficfkmpeod

X-Requested-With: XMLHtpRequest

Content-Type: application/x-www-form-urlencoded; charset=UTF-8

user_id:1031609757

fullname:Michael Cypher

ids[0][id]:100000626470156

Listing 19: A (simplified) version of the HTTP request that the Social Profile view notification sent
which includes Facebook user identifier, full-name and the identifiers of Facebook profiles the extension
user has visited. We have decoded and provided the content in a human-readable format.

According to our definition (§3.1.1), the second network request could be considered malicious. The

extension does not suggest that by using it, users provide5 the third-party service with information about

what Facebook profiles they visit. Knowing this, many users would likely not enable the extension or at

least prevent it from executing the malicious operation (sending the HTTP request in Listing 19). In this

case, our modified Chrome browser successfully flagged malicious behaviour and gave users the ability to

prevent it from occurring.

5This information is also sent using the insecure HTTP protocol.
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7.2.3 Limitations

Although we found two benign but suspicious extensions that manipulated Facebook “likes” and one ex-

tension that we consider malicious, this evaluation surfaced serious limitations with our modified browser.

Lack of Information

The first and most noticeable limitation was the lack of information provided by the pop-up dialogs. In

order for this project to be successful, users must be able to correctly distinguish between malicious and

benign extension actions when alerted with a pop-up. Unfortunately, even when searching for malicious

extensions, this task is not currently straightforward.

Currently, the only way we describe elements on a web-page is using the data-description and data-

-sensitive attributes. Unfortunately, this only works when the web-page has set the description and

sensitivity of each element, which Facebook does not currently do. Consequently, we could not easily

determine if operations performed (e.g. events dispatched or data read) on elements are malicious or not.

We also did not have enough information to determine if inserting, replacing, removing or creating

elements was malicious. As the majority of extensions performed these operations, we assumed they were

benign and necessary for core functionality and therefore we always allowed these actions.

Sending network requests and reading network responses also proved difficult to analyse with our pop-ups.

We currently only display the URL of the request and do not show parameters or custom headers sent

with HTTP POST requests. In order to determine the intent of the network requests, we inspected them

manually using Chrome’s built-in developer tools. However, non-technical users are extremely unlikely to

do this themselves and we assume they would either allow or prevent all requests to external servers. In

the case of the Social Profile view notification extension, this would result in allowing malicious behaviour

(sending the user’s Facebook profile views) or breaking core functionality (seeing who viewed the user’s

Facebook profile).

Finally, we struggled when analysing element attribute reads or mutations. Our modified browser inter-

cepts and prompts users (if configured) whenever an extension attempts to remove an attribute or read

and change the attribute’s value. During the evaluation we only displayed the name of the attribute and

not the actual value which did not provide enough information to determine malice.

Background Page Proxy-ing

When analysing the Social Profile view notification we also discovered another limitation with regards

to network requests. The extension’s background page was proxy-ing requests from its content script to

an external server. All extension network requests intercepted on the Facebook page were being sent to

the background page (see Figure 7.5), which appeared less malicious than if they were being sent to an

external server. The fact that they are forwarded to the external server from the background page is

hidden from everyday users (see Figure 7.6). This disguise makes network requests containing sensitive

information look less suspicious as they do not appear to leave the browser.

This disadvantage exists because we currently only intercept operations executed within content scripts.

We do this by only considering operations that are executed originally from within an isolated world

and determining the extension from the isolated world’s security origin (§4.5). As background pages run
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Figure 7.6: A malicious content script can disguise the recipient of a network request by proxy-ing it
through its background page.

within their own process (similar to other web-pages), all actions executed within a background page

operate within its main world.

7.3 Mechanical Turk: User Survey

To properly evaluate the user interface and experience with regards to our pop-up dialogs that warn

users of suspicious extension actions, we carried out a user survey. In particular, we wanted to figure

out whether users understood what our pop-ups were warning them of, whether they would allow or

prevent extension actions in general and whether or not different extension actions would influence users

differently.

Unlike our previous evaluation of malicious extension action pop-ups (§7.2), we decided to focus on

just benign actions for the purpose of this analysis. We crafted a series of small surveys that asked 7

questions (see below) on anonymised6 screenshots of 42 unique extension action warnings. The screenshots

included pop-ups warnings of extensions attempting to trigger events, mutate the DOM (i.e. add, remove

or replace elements on a page), create elements, send network requests and read their responses, read

element attributes and change them.

1. Question: “Do you understand what the pop-up is telling you?”

Answers: “Yes”, “No” or “Kind of”.

2. Question: In around 140 characters (length of a tweet), explain what you think this

pop-up is doing?

3. Question: Would you click “Accept” or “Prevent”?

Answers: “Accept” or “Prevent”

4. Question: In around 140 characters (length of a tweet), explain why you would click

“Allow” or “Prevent”?

5. Question: Would you select “Always allow” or “Always prevent”?

Answers: “Always allow”, “Always prevent” or Neither

6All personally identifiable information was hidden from screenshots.
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6. Question: Do you think the extension has done something malicious?

Answers: “Yes”, “No” or “Not sure”

7. Question: What would you expect would happen when you click the close (”X”) button

in the top right corner of the pop-up?

Answers: “Allow action”, “Prevent action” or “Not sure”

We distributed the survey through Amazon’s Mechanical Turk [51], a crowd-sourcing Internet market-

place, and requested 20 responses for each screenshot, or equivalently 840 responses in total. To facilitate

peer review, we have published survey results online [52].

7.3.1 Preventing Suspicious Actions

One of our goals was to reduce the number of warning pop-up dialogs so that users only need to make

decisions infrequently (§6). As breaking few benign extensions is a project goal, we hoped this would

reduce the frequency at which users prevent benign operations and break extensions. However, we

still wanted to determine if respondents, would generally allow or prevent extension actions in order to

quantify the number of benign extensions we break. We asked survey respondents if they would allow

or prevent an extension action given a screenshot of its corresponding warning dialog. We found that

64% of respondents chose to prevent actions in general and that this varied based on the extension action

(see Table 7.1). We attempted to confirm this hypothesis by running a Chi-squared test with 6 degrees7

of freedom and computed a Chi-squared value of 7.964 and p-value of 0.241 but could not reject the

null hypothesis8 with enough certainty. Although we cannot guarantee that respondents did in fact read

pop-up dialogs carefully, we believe the dialog message did have an impact and therefore we analyse the

results for each action group.

We discovered that users are also more likely to prevent extensions attempting to change attributes

(72.5% prevented) and trigger events (70.0% prevented). Since events are often necessary in Facebook

hijacking attacks (§3.3), it is generally good that users are more cautious with them. However, we haven’t

found any extensions that carry out attacks by changing element attributes, although it is possible, and

we would ideally like users to prevent these actions less frequently. This reinforces our decision to not

intercept these actions by default (§3.10). On the other hand, respondents were less likely to prevent

extensions creating elements (61.0% prevented) or reading element attributes. This may be because users

share our belief that these actions as less likely to be malicious.

Since we only warn of benign extension actions in the pop-up dialogs we presented in the survey, we expect

our modified browser to break at least 64% of benign extensions that require one suspicious operation to

succeed in order to perform core functionality. This assumes that users have configured their browser to

intercept all given extension action groups. If extensions require multiple suspicious operation approvals,

or require changes to element attributes and events to fire, we expect this value to increase substantially.

7.3.2 User Understanding

We investigated how many people understood our pop-ups in order to determine whether they were too

complicated for the everyday user. We discovered that in general, 53%, 28% and 20% of respondents

7We excluded the “Total” row in Listing 7.1.
8The null hypothesis in these tests is that external variables like extension actions or user understanding do not influence

a user’s decision to allow or prevent an extension action.
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Action Group Size Prevented (%) Bar Chart: Prevented (%)

Total 839 64.1

Change Attribute 120 72.5

Event 80 70.0

DOM Mutation 280 63.6

Network Request 80 62.5

Network Response 80 62.5

Create Element 100 61.0

Read Attribute 99 56.6

40.0 60.0 80.0

Table 7.1: The percentage (1 decimal point) of respondents that chose to prevent the extension action
for each action group.

understood, “kind of” understood or did not understand the suspicious extension action warning. This

shows that there is huge room for improvement and perhaps teaching users about the implications and

effects different groups of actions would help.

In Chapter 3, we decided which suspicious actions to intercept based on their likelihood to be used by

malice. However, it is not clear if users understand the implications of suspicious actions and we therefore

compared user understanding with extension action groups (see Figure 7.7). The extension actions

described in the warning pop-ups did not seem to have a huge influence on whether users understood the

pop-up or not. One takeaway is that more people understood what it meant to add, remove or replace

elements on the page than what it meant to create an element or change an element’s attribute.

In order to determine if user understanding had an influence on the decision to allow or prevent extension

actions, we performed a Chi-squared test with 2 degrees of freedom. We found the chi-squared value

to be 70.518 and p-value to be 0, and we therefore rejected the null hypothesis. Following on from

this conclusion, we discovered that, according to our survey, 89.1% of the 166 respondents who did not

understand the pop-up prevented it (see Figure 7.7). On the other hand, 67.8% of the 233 respondents

who “kind of” understood the pop-up prevented it, and only 52.8% of the 441 respondents who understood

the pop-up prevented it. With such large sample populations, it is clear that the less people understand

our warning pop-up, the more likely they will prevent the associated action (i.e. respondents were more

risk-adverse when they didn’t understand the warnings).

We also discovered that 43.4% of the 128 users that considered an extension malicious also allowed the

extension from performing the suspicious operation. Furthermore, 39.0% of 259 users that considered an

extension benign also prevented it from executing a suspicious operation. We found this deeply worrying

as these respondents were acting in a contradictory manner - either harming themselves by allowing (what

they consider to be) malicious extensions or breaking benign extension functionality. This also suggests

that these users don’t understand our warning pop-ups. Finally, 87.5% of the 352 users that are not sure

whether an extension is malicious or not, prevent the extension actions.

As pop-ups shown were describing benign extension actions, we hoped that users that understand the pop-

up would allow the actions to occur. However, this proved not to be the case with 52.8% of respondents

who claim to understand the pop-up still preventing actions. We believe this is because users that
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Figure 7.7: A bar chart explaining the percentage (to nearest integer) of users that understand, “kind
of” understand or don’t understand our warning pop-ups.

understand the pop-up warnings may still not fully understand what the extension is doing or are not

sure whether the extension is benign or malicious and therefore act in a risk-adverse manner.

7.3.3 Remembering User Decision

Our modified Chrome browser can remember a user’s decision to allow or prevent a certain group of

actions9 (§6.3) so that they do not need to approve or prevent the same extension multiple times. Instead

of having one “Remember decision” checkbox, we opted for two10, “Always allow” and “Always prevent”,

with the aim of clarifying the pop-up. To evaluate this decision, we included a question in our survey to

determine if users will choose to have the modified browser remember their decision.

Although a majority of respondents choose to select “Always allow” (23.1%) or “Always prevent” (39.9%),

this may be because more respondents prevent actions than allow them. Given that the user allowed the

extension action, 63.1% chose to always allow the prompt and 33.9% chose to always display the prompt

(neither always allow or always prevent). On the other hand, given that the user prevented the action,

60.6% chose to always prevent the prompt and 38.7% chose to always display the prompt. Users are

therefore slightly less likely to request that the browser remember their answer if they decided to prevent

the extension action. This may be because respondents view preventing all actions and subsequently

breaking extension functionality as worse than allowing all actions and putting themselves at risk (i.e.

users chose convenience over security).

We also found that only a negligible number of users selected “Always allow” and clicked the “Prevent”

button (4) or selected “Always prevent” and clicked the “Allow” button11 (9). This suggests that users

9In fact, we map the text displayed on a pop-up to a user’s “remembered” decision.
10We show a third, “Always allow for non-sensitive elements”, if the extension operates on sensitive elements or data.
11Our modified browser explicitly forbids users from selecting “Always prevent” and clicking the “Allow” button and vice

versa (§5.5).
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understand this feature and that the user interface correctly conveys the functionality.

7.3.4 Closing Pop-up Dialogs

We were also interested in discovering whether or not users knew what the default behaviour of warning

dialogs is when they are closed using the X button in the top right corner. Due to project goals, we chose

to allow suspicious extension actions by default to reduce the number of extensions we break (§5.5).

We found that 53.2% of respondents think clicking the close button prevents the extension action, 27%

are not sure and 19.8% think it allows it. Only one in five people are actually correct which demonstrates

a major flaw of the pop-up user interface and experience.

By reaching out to Chromium view developers12 via IRC, we learned that our current dialog implement-

ation is considered an anti-pattern and that “Cancel” buttons (i.e. our “Prevent” button) on dialogs

should not perform any functionality but instead cancel the dialog. To conform to existing patterns,

our dialog could instead have a “Prevent” button, where we now have the “Allow” button, that pre-

vents suspicious extension actions and a “Cancel” button that does nothing (i.e. implicitly allows them).

This would likely improve user-understanding but may result in users preventing more benign extension

actions. We leave exploring this as future work.

7.3.5 Survey Limitations

Two limitations of this evaluation are apparent and we must therefore view the survey results with some

scepticism.

First and foremost, our respondents were paid to answer the survey. Mechanical Turk allows requesters

(i.e. those who issue survey jobs) to discard responses that seem incorrect and respondents may therefore

read the questions more carefully than everyday users. Browser users would likely be surfing the web

when our warning pop-ups are displayed and might want to close them as quickly as possible in order to

continue browsing. Alternatively, we might in fact see the opposite result whereby respondents are less

concerned about the content of warning dialogs than browsers users as their aim may be to finish the

survey as quickly as possible.

Secondly, the survey respondents may not be a representative sample of all extension users and may

be more technically inclined. However, as we neither have access to demographic information about

Mechanical Turk or Chrome browser extension users, we don’t infer anything from this.

7.4 Popular Benign Extensions Analysis

Building on our survey results, we wanted to empirically determine how many suspicious actions are

executed by popular extensions. This would help us better predict the likelihood of breaking popular

extensions given that 64% of users prevent suspicious actions on average (§7.3.1). Furthermore, this

would substantiate decisions we made to not intercept potentially risky actions that we believed would

be executed too frequently and thus inconvenience the user (e.g. reading or mutating element attributes).

12Chromium view developers focus on building and maintaining user interface related code including user dialogs.
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7.4.1 Methodology

Before starting this experiment, we added additional logging to our modified browser and configured

it so it would not display pop-up alerts for any suspicious actions (§3.10). This would allow us to run

extensions without warning dialog interruptions.

For this analysis, we looked at 4 popular and recommended extensions within the “Getting Started”

collection, which is on display at the top of the CWS. Each extension had close to or well over a million

users according to the CWS and are listed below:

1. Grammarly for Chrome [53]. The extension is offered by grammarly.com and, as of the 14th of

June 2017, has 10,000,000+ users and a 4.5 star rating (based on 20038 user reviews) on the CWS,

as well as 4.9k Google Plus recommendations.

2. LastPass: Free Password Manager [54]. The extension is offered by lastpass.com and, as of

the 14th of June 2017, has 5,712,137 users and a 4.5 star rating (based on 21537 user reviews) on

the CWS, as well as 4.5k Google Plus recommendations.

3. Google Dictionary (by Google) [55]. The extension is offered by Google and, as of the 14th of

June 2017, has 3,046,210 users and a 4.5 star rating (based on 12139 user reviews) on the CWS, as

well as 10k Google Plus recommendations.

4. StayFocusd [56]. The extension is offered by Transfusion Media and, as of the 14th of June 2017,

has 745,574 users and a 4.5 star rating (based on 5127 user reviews) on the CWS, as well as 4.6k

Google Plus recommendations.

7.4.2 Results

The results substantiated our decision to not intercept all suspicious actions by default (§3.10). On

average, extensions executed an order of magnitude fewer actions if we consider only default suspicious

actions versus all possible suspicious actions (see Figure 7.8).

Unfortunately, we found that popular extensions that we analysed still executed far too many default

suspicious actions. The Grammarly, LastPass, Google Dictionary and the StayFocused extensions

each executed 1,135, 1,250, 229 and 1,632 defaults suspicious actions over a 15 minute period13. This

would certainly overwhelm users if they decide not to use “Always allow” or “Always prevent” features.

Furthermore, considering the rate at which users prevent extension actions (§7.3.1), we believe that our

modified browser would break core functionality of each of the benign extensions analysed and this is a

major disadvantage of our project.

7.4.3 Limitations

A limitation of this analysis is that it does not consider the fact that users can choose to have our modified

browser save their preference (§6.3). Users are likely to do so and this would substantially reduce the

number of dialogs they are presented with.

13The extensions executed 15,056, 15,278, 1,095 and 19,749 possible suspicious extensions respectively.
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Figure 7.8: A plot of the cumulative number of suspicious actions that the Grammarly, LastPass,
Google Dictionary and StayFocusd extensions execute during a 15 minute long browsing period. The
blue line refers to all possible suspicious actions whereas the red line refers to only default suspicious
actions (§3.10).
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7.5 Performance

Companies heavily optimise their web-pages, scripts and servers to quickly deliver responsive web-pages

to users. Consequently, users have come to expect responsive web-pages.

However, heavily optimised web-pages and scripts can still render and execute slowly if run with slow

rendering and JavaScript engines. The Chromium project therefore invests a lot of resources in profiling

the performance, memory and energy consumption of the Chrome browser. The project’s perf regression

sheriff bot [57] observes Chrome’s continuous integration tests, which are run against every build, and

alerts developers of performance regressions via a publicly view-able dashboard [58].

As a result, one project goal was to ensure any modifications to the Chrome browser do not incur a

substantial overhead or negatively affect the browser’s responsiveness or memory and power usage. We

expect to see a performance overhead in intercepted operations when we check to see if execution is

occurring within the content of an isolated world. In this section, we profile the performance of our

modified Chrome browser, running without extensions, to ensure our changes to the Blink or JavaScript

V8 engine do not negatively impact web-page responsiveness.

Our modified browser correctly blocks the renderer process’ UI thread whenever pop-up dialogs are

displayed (§5.3) as a result of suspicious browser operations. Web-pages and content scripts are therefore

made unresponsive. In order to less frequently block web-pages, we worked on reducing the total number

of dialogs (§6).

7.5.1 Telemetry Benchmarks

Telemetry is a performance testing framework used by the Chromium project. Developers can run

automated tests that launch the browser, open windows and tabs, navigate to pages and perform arbitrary

operations on the web-pages [59].

Fortunately, the Chromium source directory contains a bundle of Telemetry performance tests, located

with the src/tools/perf directory. The test suites contain Blink and V8 engines performance tests, as

well as browser power and memory usage tests. As our project mainly added code in the Blink engine

code-base, the majority of which involves checking if execution is within an isolated world, we decided to

benchmark our modified browser against the original in terms of Blink engine performance.

Although we have regularly merged in Chrome changes from the master branch, our modified branch

was behind the master branch when evaluating it. As a result, when comparing the performance of our

modified browser to the original, we checked-out the closest commit on the master branch to our branch

and built it as a separate production browser.

7.5.2 Methodology

We executed Telemetry benchmarks on a MacBook Pro (Retina, 15-inch, Mid 2015) running macOS

Sierra (version 10.12.5) with a 2.5 GHz Intel Core i7 processor, 16 GB 1600 MHz DDR3 of RAM and

with a Intel Iris Pro 1536 MB graphics card. To reduce fluctuations in processing ability, no other

applications were running during tests apart from those that macOS executes in the background upon

start-up.
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On test completion, Telemetry produces a report, in the form of a web-page, that displays various statistics

including the mean, min, max, standard deviation, count sum for each benchmark test. These metrics

are aggregated over a set of 50 tests runs in order to have a significant sample size. Telemetry’s report

can also compare test runs between two browsers (see Listing 20) and can display statistics of one test

run relative to another. These include the absolute and percentage difference of all statistics (i.e. mean,

min, max, etc), the p-Value14, Mann-Whitney U statistic15 and z-score16. We comment these statistics

in this chapter.

For each benchmark (e.g. blink perf.dom), we have produced a table comparing the average performance

of the original Chrome browser to our modified one (in milliseconds). We calculated a 95% confidence

interval for these timings given the mean and standard deviation and display this using the ± sign (where

relevant). We also show the percent difference between the two average timings. Finally, we colour the

background of every row (i.e. test) that has a p-Value greater than 0.05 as we cannot reject the null

hypothesis that our modifications had no impact on the test.

As we added custom tests ourselves, we split the rows of results in each table in two with a solid line.

The bottom half contains the results to our custom tests.

$ tools/perf/run_benchmark blink_perf.dom

> --browser-executable=out/Default/Chromium.app/Contents/MacOS/Chromium

> --reset-results --results-label="Modified Chrome Browser"

> --pageset-repeat=10

View result at file:///Users/cypher/Documents/chromium/src/tools/perf/results.html

$ tools/perf/run_benchmark blink_perf.dom

> --browser-executable=out/OldMaster/Chromium.app/Contents/MacOS/Chromium

> --results-label="Original Chrome Browser"

> --pageset-repeat=10

View result at file:///Users/cypher/Documents/chromium/src/tools/perf/results.html

Listing 20: The shell commands we used to execute the blink perf.dom performance test suite on both
the modified Chrome browser (Default) and original Chrome browser (OldMaster) compare the results.

7.5.3 Benchmark: Blink DOM Operations

The first benchmark we ran analysed the performance of DOM operations within the Blink engine

(blink perf.dom). This is particularly relevant as the majority of operations intercepted involved mutating

or reading from the DOM.

According to the test results (see Table 7.2), modifying an element’s class name, identifier or title resulted

in a slight performance regression. As all of these methods involve modifying an element’s attributes and

as we intercept calls to Element.setAttribute, we expected to incur a performance overhead. We were

pleased as the overhead was generally negligible. However, to confirm a small overhead, we created

a new set-element-attribute test similar to the modify-element-classname test but that explicitly calls

the Element.setAttribute method 1000 times and saw a substantial 383.731% increase in timings.

Further investigation revealed that setting an element’s class name by mutating the class name field (i.e.

el.className = ‘class1’;) does not call into our modified Element.setAttribute method.

14The probability the execution time distributions are not significantly different.
15The U value produced and consumed by the Mann-Whitney hypothesis test.
16The difference between the execution time distribution mean and the reference distribution mean in number of standard

deviations.
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We noticed a small increase in timings when calling the Selection.addRange method [60]. We traced the

Blink code executed in this test and could not find any calls to modified methods. Since the increase is so

small and the timing confidence intervals nearly overlap, we also considered this increase negligible and

likely down to chance (the 95% confidence intervals also overlap). Further profiling should be performed

to confirm this.

Surprisingly, we saw a large decrease in timings (-49.854%) for the select-multiple-add test which “meas-

ures [the] performance of adding option elements to a multi-selection select element”. This test appends

500 child nodes using our modified ContainerNode.appendChild method to a container node and then

clears the container node’s inner HTML. We also saw a large decrease in timings for the select-single-add

(-17.241%) test and select-single-remove test (-28.031%). As we did not believe code introduced to DOM

mutation operations increased performance, we created the append-child test which appends 1,000 div

elements to a div container element and we saw a similar decrease in timings (-73.986%). We believe this

performance improvement could either be due to compiling the original browser with incorrect optimiza-

tion flags or as a result of an incorrect implementation in our modified browser. Due to time constraints,

we did not investigate this further but this task for future work.

We also noticed timing reductions in the long-sibling-list and textarea-dom tests. Similarly to the

selection-related tests, we did not establish probable cause and further investigation is necessary.

The remove child with selection test displayed the largest performance hit of all tests. Upon inspection

we discovered the test removed 1,000 elements from a container and appended them to another using

the ContainerNode removeChild and appendChild methods respectively. As no test existed to measure

the impact of our changes on the Document.createElement method, we created the create-element test

which creates 500,000 elements in a loop. We discovered a 47.539% increase in timings for it which is a

substantial performance regression.

We consider this first set of benchmarks as definitive proof that the changes introduced to our modified

Chrome browser do have a performance overhead and future work should address this if necessary17.

7.5.4 Benchmark: Blink Events

As we modified the EventDispatcher::Dispatch() method, we ran the Blink Events benchmark (blink -

perf.events). Unlike DOM operations (e.g. ContainerNode.appendChild), we also create a new HashSet

and subsequently delete it within the EventDispatcher::Dispatch() method. Therefore, we expected

to see a larger performance impact on events than on DOM operations18.

We were surprised to see reductions in timings for our modified browser for the EventsDispatcing test (-

19.279%). This test fires 500 custom events on a DOM tree of depth 50 and we confirmed, by intentionally

breaking the performance tests, that it executes the modified method. We investigated this further by

creating the SimpleClickDispatch test that fires 1,000 clicks on a single element appended to the page’s

body and found a 69.522% increase in timings. This more closely correlated to our DOM operation

benchmark results.

17Whether or not these changes are considered performance regressions is up to the Chromium team to decide.
18As mentioned, we ended up seeing timing reductions for the DOM operation benchmark tests.
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Name Original Browser Modified Browser
Avg (ms) Avg (ms) ∆ Avg (%)

modify-element-classname 4,489.4 ± 42.0 4,797.5 ± 100.4 +6.9
addRange 3,821.9 ± 13.8 3,852.6 ± 21.1 +0.8
modify-element-id 1,720.3 ± 11.6 1,764.1 ± 10.1 +2.5
modify-element-title 1,499.8 ± 11.1 1,512.1 ± 7.3 +0.8
select-multiple-add 141.3 ± 0.9 70.9 ± 0.5 -49.9
remove child with selection 57.6 ± 0.7 140.8 ± 1.2 +144.6
select-single-add 26.0 ± 0.1 21.5 ± 0.1 -17.2
inner html with selection 24.5 ± 0.6 24.9 ± 0.6 +1.2
select-long-word 14.4 ± 0.3 14.4 ± 0.2 -0.1
long-sibling-list 13.9 12.0 ± 0.1 -13.7
select-single-remove 8.5 ± 0.1 6.1 -28.0
textarea-dom 3.4 3.0 -14.0
div-editable 0.3 0.2 -4.7
textarea-edit 0.2 0.2 -3.5

create-element 4,418.0 ± 184.5 6,518.4 ± 77.9 +47.5
append-child 55.1 ± 1.2 14.3 ± 0.2 -74.0
set-element-attribute 14.5 ± 0.3 70.0 ± 0.6 +383.7

Table 7.2: A comparison of Blink DOM Operation benchmarks for both the original and modified
Chrome Browser.

Name Original Browser Modified Browser
Avg (ms) Avg (ms) ∆ Avg (%)

...ShadowTrees* 601.9 ± 2.9 579.5 ± 13.0 -3.7

...DeeplyNestedShadowTrees** 235.3 ± 0.9 233.3 ± 0.9 -0.8
EventsDispatching 25.2 ± 0.1 20.3 ± 0.1 -19.3

SimpleClickDispatch 56.2 ± 0.7 95.3 ± 0.9 +69.5

Table 7.3: A comparison of Blink Event benchmarks for both the original and modified Chrome Browser.
The test EventsDispatchingInShadowTrees* and EventsDispatchingInDeeplyNestedShadowTrees** have
been shortened and have a sample size of 30 and 45 in the Original Browser tests (due to test timeouts).

7.5.5 Benchmark: Blink Network Requests

Since we made changes to the XMLHTTPRequest.send method, we ran the associated performance test.

We do not have enough information to determine if our modifications had a performance impact (the

p-Value was 0.118) as the timing increase was only small (+2.954%).

One limitation is that we also changed methods to read a network response but the only test within this

benchmark analyses the time to send network requests. To address this, we also added a read-response

test which sends and reads 1000 network requests and responses respectively. Although we saw a small

increase in the mean, it wasn’t enough statistically significant due to the large standard deviations of

test runs (202.140ms and 202.411ms respectively). Although we believe our changes had an impact, we

suspect that they are insignificant compared with the costs of making a network request.
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Name Original Browser Modified Browser
Avg (ms) Avg (ms) ∆ Avg (%)

send 1,173.8 ± 57.1 1,208.5 ± 59.2 +3.0

read-response 1,208.1 ± 56.0 1,245.5 ± 56.1 +3.1

Table 7.4: A comparison of Blink XML HTTP Request benchmarks for both the original and modified
Chrome Browser.

7.5.6 Benchmark Limitations

Telemetry and the Chromium source code have a wide list of other useful benchmarks that test the

performance of the V8 engine as it browses desktop or mobile web-pages and memory or power usage

across the top 10 and 25 web-pages. However, many benchmarks require Google accounts in order to,

presumably, execute the tests on the cloud. Consequently, our Telemetry tests are limited to those able

to run locally.

7.6 Integration With The Chromium Project

An indirect goal of this project was to ensure that any changes to the Chrome browser could be adopted

and integrated with the Chromium project as a whole. As a result, we prioritised minimal and simple

software solutions over complex ones.

Our modified browser consists of around 2650 and 100 lines of code added and deleted respectively to the

Chromium browser. The majority of which were applied to the browser process and consist of new view

classes for the warning dialog and “Configure Suspicious Actions” dialog. However, apart from necessary

performance tests, no new tests were introduced to ensure correct execution. We therefore expect the

quantity of code added to increase substantially before our browser is production ready. Although this

project would produce a large patch, we believe it is acceptable due to the size of the complexity of the

changes implemented.

We provide a generated git diff file between our modified Chrome browser and the latest (locally) merged

commit from the Chrome browser master branch. This commit was published on the 18th of May 2017

and its associated code review is visible online [61]. Our changes have not yet been presented as a patch

to the Chromium project.

7.6.1 Backwards Compatibility

As various JavaScript Web APIs now can potentially throw security exceptions, existing extensions are

likely to break when users prevent them from executing malicious operations. Extensions that currently

handle exceptions gracefully before attempting to call suspicious extensions should remain unaffected.

As a project goal was to not break existing browser functionality, web-pages or many benign extensions, we

also aimed to break few existing tests. Of the 54,522 existing Blink Layout tests, our modified browser

broke 374 (0.7%). We noticed all that 4 test timeouts and the vast majority of test crashes involved

performing a suspicious operation (§3) within an isolated world (§4.5). According to test comments,

the chrome-extension:// scheme is an unknown scheme and as a result, isolated worlds created within
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tests have their security origins set to https://cloud-cuckoo-land.google:2112 while “pretending”

the URL is a valid extension security origin. We believe our test crashes were a result of our assumption

that all isolated worlds are associated with extensions that can be retrieved via their security origins.

However, as previously mentioned, this assumption can be easily corrected.

Furthermore, extensions that actively use the data-description and data-sensitive attributes for

unrelated reasons may find these actions are intercepted by default or prevented respectively. Web-pages

that use these attributes for unrelated reasons may also unintentionally impact our modified Chrome

browser. A potential solution to these issues could involve standardising these attributes.

7.7 Summary

In this chapter, we evaluated our modified browser against project objectives (§1.1).

We first built a test extension that executes suspicious operations, carries out Facebook hijacking attacks

and performs the necessary actions to carry out ad injection and user tracking attacks. The extension also

attempts to evade detection by executing operations within the page’s main world. Our modified browser

proved successful in intercepting all suspicious operations and guaranteeing sophisticated attackers cannot

evade detection, whilst also protecting users against Facebook hijacking attacks.

We analyse a dozen potentially malicious extensions present on the CWS to evaluate the effectiveness of

our project. Our browser intercepted suspicious operations that could have been malicious if executed

without user permission from two extensions. Furthermore, we detect a broken, but potentially malicious

extension that leaks user data. We discover our warning dialogs often do not provide enough information

to correctly classify actions as malicious or benign.

As our project is heavily based on user participation, we evaluated both the user interface and warning

dialogs by running a survey with nearly a thousand responses. We conclude that users do not have enough

information or expertise to understand our warnings and correctly classify extension actions, and we find

that the majority of users prevent benign actions. To determine the impact of this on existing extensions,

we analyse 4 popular benign extensions and discover that most trigger thousands of suspicious actions.

We believe our project would unfortunately break many benign extensions.

Finally, we evaluate the overhead of our changes and we observe large performance regressions. We

describe the complexity of this project as a whole and mention the backwards compatibility of changes.
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Conclusion

As discussed in Chapter 2, the Chrome extension security model has failed to prevent malicious extension

behaviour within the Chrome browser. Existing analysis tools, whilst able to catch many malicious

extensions, have not been able to provide security guarantees about extensions published on the Chrome

Web Store (CWS) or extensions running within one’s browser. The goal of this project was to guarantee

the protection of browser users from popular threats without breaking many benign extensions or web-

pages and without incurring unnecessary performance overheads.

We address the limitations of previous work and achieve most goals by proposing a novel extension to the

Chrome security model that forces users to allow or prevent potentially malicious extensions actions that

are intercepted at run-time. We relax a key goal so that instead of guaranteeing that malicious extension

behaviour cannot occur, we guarantee that if it occurs, we prompt users to allow or prevent it. A modified

Chrome browser successfully implements these suggestions but incurs substantial performance overheads.

We also discover that users are not adequately equipped to classify suspicious extensions as malicious or

benign which results in weakened protection and benign extensions breaking.

Achieving these goals was non-trivial due to the challenges of efficiently classifying actions as suspicious,

guaranteeing the detection of extension operations, breaking minimal benign extensions and presenting

suspicious extension actions in a user friendly manner. Modifying the Chrome browser also proved a

challenging software engineering task that involved studying and contributing to complex segments of

Chrome’s C++ source code and multi-process architecture as a whole.

8.1 Summary of Work

We first summarise the work carried out in this project and compare it against our project objectives,

which we presented in priority order in Chapter 1. Although equally important, this section excludes

research work carried out Chapter 2, and instead focuses on project contributions.

We began by presenting a threat model where we assume extensions are attempting to execute attacks on

web-pages via content scripts. We propose a novel solution that involves analysing extension behaviour

at run-time and alerting users of suspicious extension actions. We contribute a list of Web API methods

and general JavaScript operations which we deem suspicious and build a feature that allows users to

configure this themselves.

We continue by describing the challenge of detecting and intercepting suspicious extension actions; we

propose and implement modifications to the Chrome browser that solve this problem. Our solution guar-

antees sophisticated attackers cannot evade detection and guarantees we intercept all extension operations

that we deem suspicious.
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We design and actualise warning dialogs within the Chrome browser that alert users whenever an ex-

tension attempts to execute a suspicious operation and which provide users with the ability to allow

or prevent these actions. We choose to block script execution while dialogs are displayed to prevent

extensions from harming users. Furthermore, we propose multiple dialog features that provide additional

information about actions in questions to help users better classify malice and therefore better protect

themselves.

Warning dialogs have the potential to overwhelm users, thereby reducing their ability to correctly classify

suspicious actions and limiting our browser’s potential protection. We therefore spend considerable time

white-listing benign events and operations performed on elements unattached to the DOM tree. We

present users with the tool to always allow or prevent a certain type of action. Finally, we incorporate

a simple sensitivity model whereby web-pages can mark elements and their data as more vulnerable to

malicious extension attacks.

To conclude, we evaluate our modified Chrome browser against a contrived malicious extension and

suspicious extensions publicly available on the CWS. We conduct a large survey of everyday browser

users to assess the user interface and success of our dialogs and analyse popular extensions on the CWS

to determine its impact. Subsequently, we evaluate the performance impact of our Chrome browser

modifications and consider its backwards compatibility.

In terms of protecting users from Facebook hijacking, ad injection and user tracking threats carried

out by sophisticated attackers, we have been largely successful. We guarantee our browser warns users

of suspicious extension actions and provides them with the necessary tools to prevent malicious ones.

Furthermore, our modifications do not directly break benign extensions.

However, our project has not been entirely successful as everyday users struggle to correctly classify

suspicious extensions as malicious or benign. This results in weakened user protection and potentially

breaks benign extensions. Although web-pages infrequently crash when executed within our modified

browser, this is due to implementation errors and not a incompatible security model. Unfortunately, our

modifications have incurred a significant performance overhead but we feel there is plenty of room for

optimisations.

8.2 Future Work

We believe that this project has contributed significantly to the problem of detecting malicious extension

behaviour in browsers and preventing it before it harms users. Nevertheless, the solutions we propose can

be significantly improved in order to yield better results and better protect users. We suggest possible

extensions to this project and list them in descending order of priority.

1. Additional Information. From our evaluation we found that survey respondents often didn’t

have enough information to classify extensions as malicious or benign. Future work should involve

completing features to highlight elements (§5.6) and display additional information about operations

(§5.8), or to introduce additional tools to help users classify suspicious operations as benign or

malicious.

2. User Interface. As seen in our user survey (§7.3), many users don’t fully understand and are risk-

adverse to our warning dialogs. This resulted in far too many benign actions prevented and therefore
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benign extensions potentially broken. Future work should be carried out to explore different dialog

messages, user interface designs and mediums to better convey our warning message.

3. Remembering User Decisions. Currently, we provide users with the ability to have our browser

remember their decisions to allow or prevent certain actions. However, this only lasts until the

browser is restarted as these preferences are stored in-memory. This inconveniences users as they

are re-asked to give permission to extensions every time they restart their browser. Similarly to

how we configure suspicious actions (§3.10), we should persist user decisions to disk and give users

more options for how long these wish to allow or prevent certain actions. This would reduce the

number of warning dialogs displayed and should be explored further.

4. Background Pages. To prevent extensions proxy-ing malicious network requests through their

background pages (§7.6), we should consider intercepting suspicious operations executed within

extension background pages as well.

5. Tracking Sensitive Data. Our browser compares sensitive data previously read with data being

send in network requests to detect sensitive data leakage (§6.4.3). Unfortunately, malicious attackers

can trivially circumvent this by modifying or encrypting the sensitive data before uploading it. To

prevent this from occurring, an extension to this project could track the data as it propagates

through Chrome’s V8 JavaScript engine by adding taint meta-data to every JavaScript Value.

6. Sensitivity Model. DOM elements represented within our modified browser can either be sensitive

or not. However, elements are generally at risk from only a subset of suspicious extension actions.

For example, a “like” button could be vulnerable to extensions triggering click events or reading

attributes but not at risk from removal or style changes. Future work could fine-grain our model

such that elements would declare the suspicious actions to which they are sensitive. This would in

turn reduce the number of dialogs and false positives.

7. Configurable Suspicious Actions. Currently, we categorise a set of pre-defined Blink methods

into sets that everyday users can (hopefully) understand. For example, the methods Element

appendChild, insertChild, replaceChild, and removeChild are considered part of the “DOM

mutation” set which has “Adds, removes or replaces an element” as a human-readable description.

This provides a layer of abstraction and allows everyday users to decide to intercept all or none

of the methods in the sets, without knowing the implementation details. A future extension to

this project could be to give technical users fine-grained control over which Blink methods they

intercept.
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Suspicious Extension Actions

enum class SuspiciousExtensionAction {

EVENT, // EventTarget.dispatchEvent, Element.click, ...

NETWORK_REQUEST, // XMLHttpRequest.send

DOM_MUTATION, // Node.appendChild, Node.removeChild, ...

ELEMENT_DESCRIPTION_MUTATION, // Element.setAttribute("data-sensitive", ...)

READ_ELEMENT,

ELEMENT_MUTATION,

CREATE_ELEMENT, // Document.createElement

NETWORK_RESPONSE, // XMLHttpRequest.onreadystatechange

NAVIGATOR // window.navigator

};

class SuspiciousActionConfig {

public:

typedef base::Callback<void(bool)> IsActionSuspiciousCallback;

SuspiciousActionConfig(content::BrowserContext* browser_context);

// Determine if an extension action should be considered suspicious.

// Calls callback(true) if it should and callback(false) otherwise

void IsActionSuspicious(

const std::string& extension_id,

SuspiciousExtensionAction action,

const IsActionSuspiciousCallback& callback

);

void SetActionSuspicious(

const std::string& extension_id,

SuspiciousExtensionAction action,

bool is_suspicious

);

private:

std::string ExtensionActionToString(SuspiciousExtensionAction action);

// This is a callback executed when IsActionSuspicious reads from data store.

// Converts Values read from data store to bools and executes

// IsActionSuspiciousCallback

void IsActionSuspiciousReadCallBack(

const std::string& extension_id,

SuspiciousExtensionAction action,

const IsActionSuspiciousCallback& callback,

callbackstd::unique_ptr<base::Value> value

);

bool IsActionSuspiciousByDefault(SuspiciousExtensionAction action);

extensions::StateStore* state_store_;

DISALLOW_COPY_AND_ASSIGN(SuspiciousActionConfig);

};

Listing 21: The SuspiciousActionConfig class definition that wraps the extension state store.
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wrapper.setupColumn('details', '.suspicious-actions-link', 'click', function(e) {

if (!this.suspiciousActionsPromptIsShowing_) {

chrome.developerPrivate.showSuspiciousActionsDialog(

extension.id,

function() {

this.suspiciousActionsPromptIsShowing_ = false;

}.bind(this)

);

this.suspiciousActionsPromptIsShowing_ = true;

}

e.preventDefault();

});

Listing 22: JavaScript snippet that triggers C++ code to open a custom dialog.

enum ReadResponsePermission {

kPromptUser, // Ask user if extension has permission to read response

kAllow, // Allow an extension to read the response without asking user

kDisallow, // Disallow an extension to read the response without asking user

};

ReadResponsePermission can_extension_read_response_;

Listing 23: An enum that represents the possible states our browser can take when deciding to alert
users of extension that attempt to read network responses.

// Read an extension action's current state and select or un-select the checkbox

void ExtensionSuspiciousActionsView::InitCheckbox(views::Checkbox* checkbox) {

checkbox->set_listener(this);

SuspiciousExtensionAction action = GetExtensionActionForCheckbox(checkbox);

suspicious_action_config_->IsActionSuspicious(

extension_->id(),

action,

base::Bind(&views::Checkbox::SetChecked, base::Unretained(checkbox))

);

}

// Whenever a checkbox is selected or un-selected, update the configuration

void ExtensionSuspiciousActionsView::ButtonPressed(views::Button* sender,

const ui::Event& event) {

views::Checkbox* checkbox = (views::Checkbox*) sender;

suspicious_action_config_->SetActionSuspicious(

extension_->id(),

GetExtensionActionForCheckbox(checkbox),

checkbox->checked()

);

}

Listing 24: Whenever our suspicious action configuration dialog is displayed, we load the
configuration using the ExtensionSuspiciousActionsView::InitCheckbox which reads from the
SuspiciousActionConfig state store wrapper. Whenever users change the configuration, we write back
to this state store.
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Detecting Extension Actions

bool Document::isCallerExtension(LocalFrame* frame) {

v8::Isolate* isolate = v8::Isolate::GetCurrent();

if (isolate->InContext()) {

v8::Local<v8::Context> context = isolate->GetCurrentContext();

// If current world is an isolated world, assume the caller is an extension.

if (!context.IsEmpty()) {

return DOMWrapperWorld::world(context).isIsolatedWorld());

}

}

// By default, we assume the caller is not an extension

return false;

}

Listing 25: A method to determine if the caller is an extension by checking if execution is occuring
within the context of an isolated world.

DOMWrapperWorld* originWorld() {

if (isIsolatedWorld()) {

return this;

}

if (!originWorldStack().isEmpty()) {

return originWorldStack().back().get();

}

return nullptr;

};

bool isOfIsolatedWorldOrigin() {

DOMWrapperWorld* origin = originWorld();

return origin ? origin->isIsolatedWorld() : false;

};

Listing 26: Methods to determine the origin world and whether or not it is an isolated world.
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class OriginWorldScope {

public:

explicit OriginWorldScope(PassRefPtr<DOMWrapperWorld> originWorld)

: m_hasPushed(false) {

if (originWorld) {

// "Push" the origin world onto the origin world stack

DOMWrapperWorld::originWorldStack().append(originWorld);

m_hasPushed = true;

}

}

~OriginWorldScope() {

// "Pop" the origin world to avoid tainting the entire document.

if (m_hasPushed) {

DOMWrapperWorld::originWorldStack().pop_back();

}

}

private:

bool m_hasPushed;

};

Listing 27: A class to safely push origin worlds onto the origin world stack.
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User Prompts

// content/renderer/render_frame_impl.cc

bool RenderFrameImpl::DisplayExtensionActionPrompt(

const GURL& extension_url,

const blink::WebString& message,

const SuspiciousExtensionAction& extension_action,

const ExtensionActionIsSensitive& sensitive_element

) {

bool success = false;

// Send a message to the browser process to display a suspicious extension action

// dialog and block until the user closes it.

// If the user chooses to allow the action, return true. Otherwise, return false

Send(new FrameHostMsg_DisplayExtensionActionPrompt(

routing_id_, extension_url, message.Utf16(), extension_action.Utf16(),

sensitive_element, frame_->GetDocument().Url(), &success

));

return success;

}

// third_party/WebKit/Source/core/dom/Document.cpp

bool Document::userAllowsSuspiciousExtensionAction(

LocalFrame* frame,

const String& message,

const String& additional_information,

const SuspiciousExtensionAction& extension_action,

const ExtensionActionIsSensitive& sensitive_element

) {

v8::Isolate* isolate = v8::Isolate::GetCurrent();

if (isolate->InContext()) {

v8::Local<v8::Context> context = isolate->GetCurrentContext();

if (!context.IsEmpty()) {

// Determine what world we are currently executing in

DOMWrapperWorld& world = DOMWrapperWorld::World(context);

if (world.IsOfIsolatedWorldOrigin()) {

// Need to save the result of utf8 on stack or it will be free'd

CString cs = world.GetOriginWorld()

->IsolatedWorldSecurityOrigin()

->ToString().Utf8();

GURL* extension_url = new GURL(base::StringPiece(cs.data()));

Page* page = frame->GetPage();

return !(page && !page->GetChromeClient().DisplayExtensionActionPrompt(

*extension_url,

frame,

message,

extension_action,

sensitive_element))

}

}

}

// By default, we should allow operations that haven't been prevented by the user

return true;

}

Listing 28: Intercepted suspicious operations execute the Document::-

userAllowsSuspiciousExtensionAction, which sends an IPC message to display a dialog, to
determine whether they should continue or throw an exception.
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Reducing Dialogs

// Adds all sensitive data within the node (including its children) to the

// SensitiveData HashSet

void ContainerNode::markSensitiveDataAsRead(ContainerNode& node,

bool only_children) {

// If only_children is true, only add sensitive data from the node's children

// and not the node itself.

if (!only_children) {

// If the element is not sensitive, there is no sensitive data

if (!ToElement(node).isSensitive()) {

return;

}

markAttributesAsRead(ToElement(node));

}

for (Node* child = node.firstChild(); child; child = child->nextSibling()) {

if (!child->IsElementNode()) {

continue;

} else if (child->IsContainerNode()) {

markSensitiveDataAsRead(*blink::ToContainerNode(child), false);

} else {

markAttributesAsRead(*ToElement(child));

}

}

}

// Adds all attribute values to the SensitiveData HashSet

void ContainerNode::markAttributesAsRead(Element& element) {

for (AttributeCollection::iterator it = element.Attributes().begin() ;

it != element.Attributes().end();

++it) {

element.SensitiveData().insert(it->Value());

}

}

Listing 29: The ContainerNode::markSensitiveDataAsRead method is called any time a script at-
tempts to read an extensions inner or outer HTML.
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Evaluation

chrome.runtime.onMessage.addListener(function (request, sender, sendResponse) {

var splitRequest = request.split("-");

var action = splitRequest[0];

var channel = splitRequest[1];

switch (channel) {

case "contentScript":

performAction(action); break;

case "scriptTag":

var s = document.createElement('script');

s.textContent =

"var s = document.createElement('script');" +

"s.textContent = '" + getStringToPerformAction(action) + "';" +

"document.body.appendChild(s);";

document.body.appendChild(s); break;

case "event":

var s = document.createElement('script');

s.textContent =

"document.addEventListener(\"DOMContentLoaded\", function() {" +

getStringToPerformAction(action) +

"});";

document.body.appendChild(s);

document.dispatchEvent(new Event("DOMContentLoaded")); break;

case "domTimer":

var s = document.createElement('script');

s.textContent =

"window.setTimeout(function() {" +

getStringToPerformAction(action) +

"}, 1000);";

document.body.appendChild(s); break;

case "promise":

var s = document.createElement('script');

s.textContent =

"Promise.resolve().then(function() {" +

getStringToPerformAction(action) +

"});";

document.body.appendChild(s); break;

case "mutationObserver":

var s = document.createElement('script');

s.textContent =

"var target = document.getElementsByTagName(\"p\")[0];" +

"var observer;" +

"observer = new MutationObserver(function(mutations) {" +

getStringToPerformAction(action) +

"});" +

"var config = { attributes: true, childList: true, characterData: true };" +

"observer.observe(target, config);" +

"target.setAttribute(\"data-random-attribute\", true);";

document.body.appendChild(s); break;

default: break;

}

});

Listing 30: An extension message listener that executes suspicious actions in the isolated or main world.

95


	Introduction
	Objectives
	Contributions

	Background
	Chrome Browser
	Multi-Process Architecture
	Blink Rendering Engine
	Compositor Thread Architecture

	Chrome Extensions
	Architecture and Security Model
	Content Security Policy

	Threats
	Facebook Hijacking
	Ad Injection
	User Tracking

	Permission Study
	Permission Model Shortcomings

	Analysing Extensions
	Hulk: Dynamic Extension Analysis
	WebEval: Fighting Malicious Extensions on the CWS

	Sensitive Data Tracking
	PHP Aspis: Taint Tracking
	Dynamic Spyware Analysis
	BrowserFlow: Data Flow Tracking

	Summary Of Previous Work

	Suspicious Extension Actions
	Threat Model
	Malicious Extensions

	Run-time Analysis
	Events
	Navigator
	Network
	Network Requests
	Network Responses

	Script Injection
	DOM Tree Mutation
	Element Attribute Mutation
	Sensitivity
	Description

	Reading Element Data
	Configuring Suspicious Actions Manually
	Implementation

	Summary

	Detecting Extension Actions
	Motivation
	Challenges
	Event Order Analysis
	Limitations

	Transforming JavaScript Code
	Tainting Extension Events
	Limitations

	Isolated Worlds
	Determining The Extension
	Tracking Origin World
	Script Injection Examples
	General Solution

	Summary

	User Prompts
	Preventing Malicious Extensions
	Classifying Suspicious Extension Actions
	Delegating Responsibility to Web-pages
	Statistical Model
	Delegating Responsibility to Users

	Return Values
	Callback Methods
	Blocking JavaScript Execution

	JavaScript Dialogs
	Limitations

	Custom Dialog
	Implementation

	Highlighting Elements
	Implementation
	Limitations

	Describing Elements
	Additional Information
	Summary

	Reducing Dialogs
	Suppressing Common Benign Events
	Allowing Operations On Unattached Elements
	Remembering User Choice
	Similar Suspicious Actions
	Implementation
	Limitations

	Sensitive DOM Elements
	Changing Sensitivity
	Usage
	Tracking Sensitive Data
	Implementation

	Summary

	Evaluation
	Contrived Malicious Facebook Extension
	Implementation
	Results

	Chrome Web Store Extension Analysis
	Methodology
	Results
	Limitations

	Mechanical Turk: User Survey
	Preventing Suspicious Actions
	User Understanding
	Remembering User Decision
	Closing Pop-up Dialogs
	Survey Limitations

	Popular Benign Extensions Analysis
	Methodology
	Results
	Limitations

	Performance
	Telemetry Benchmarks
	Methodology
	Benchmark: Blink DOM Operations
	Benchmark: Blink Events
	Benchmark: Blink Network Requests
	Benchmark Limitations

	Integration With The Chromium Project
	Backwards Compatibility

	Summary

	Conclusion
	Summary of Work
	Future Work

	Appendix Suspicious Extension Actions
	Appendix Detecting Extension Actions
	Appendix User Prompts
	Appendix Reducing Dialogs
	Appendix Evaluation

